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Shell Stability Related to Pattern
Formation in Plants
In the last few years we have studied the possible relation of instability of a shell su
to the patterns that develop in plants. In the present work, it is found that there is a li
relation between the epidermis (tunica) thickness and the wavelength between new
(primordia). This relation is near the buckling wavelength calculated from the geom
of the tunica and interior (corpus) cells. The main focus is on the changes in pattern
occur. (1) The wild variety of snapdragon has primordia that bulge out of plane, whi
mutant has in-plane folding. A crude mechanical model is an elastic ring constraine
the outer diameter and subjected to uniform growth, represented by thermal expans
is found that the difference in the in-plane and out-of-plane buckling can be accounte
by a modest change in one geometric parameter. (2) The second change is that
unicellular alga Acetabularia. The geometry consists of a standard cylindrical press
vessel with a nearly hemispherical end cap. At a point in time, the end cap flattens
uniform circumferential array of new shoots forms. A mechanical model for the grow
proposed, in which the wall consists of a viscous material with a locally linear rela
between mean stress and creep (growth) rate. The result is that the elliptical shap
stable growth can be regulated by one parameter of viscosity. The results reinforc
suggestion that the stability of the surface is instrumental in the generation of p
patterns, and that substantial change in pattern can be controlled by the modificatio
few mechanical parameters.@S0021-8936~00!03002-6#
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1 Introduction
The pattern of plant leaves and other organs~phyllotaxis! is

intriguing. The exact number of different phyllotaxes occurring
nature is not known, because new patterns are continuously
ported. However, every pattern is one of two types. In the one,
primordia compose a double set of spirals, such as seen in the
cone, pineapple, or sunflower head. A most interesting featur
the number of spirals crossing a fixed radius. The numbers in
two directions are most commonly two successive terms in
Fibonacci series. Each new leaf is at the golden section of
angle between the nearest older primordia. In the second typ
pattern, the whorl, the new primordium forms exactly betwe
two older ones. Details of the classification and mathemat
analysis of these patterns are in Jean@1#, and much of the curren
thought on morphogenesis is in the collection of articles~@2#!.

These patterns have aroused the scientific urge since antiq
Prevalent today is the reaction-diffusion theory of Turing@3#,
which forms the basis of the discussion of morphogenesis by H
rison @4#. A disadvantage of the theory is that a fundamental
gredient, themorphogens, has not yet been identified. Howeve
many interesting patterns resembling those in plants can be
erated with solutions to the equations.

The view we have had is that the mechanical aspects of
cells and tissues may play a significant role in pattern format
Surprising for most engineers is that the internal pressure~turgor
pressure! inside plant cells is from 7 to 10 atmospheres. Th
provides important stiffening and can cause stability problems
is difficult to imagine that nature would ignore this tremendo
driving force available for pattern generation. Apparen
Schwendender@5# first recognized this possibility. A recent su
vey of shell stability including several examples from nature,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received and accepted by the ASME Applied Mechanics Divis
Dec. 10, 1999. Associate Technical Editor: L. M. Wheeler. Discussion on the p
should be addressed to the Technical Editor, Professor Lewis T. Wheeler, De
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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not morphogenesis, is by Karam and Gibson@6,7#. Our basic
premise is that for mechanical behavior both unicellular alg
such asAcetabularia, and multicellular plants, such as the su
flower, are equivalent to a pressure vessel, as indicated in Tab

Figure 1~a! shows the tip in a single cell plantAcetabularia.
This is similar to many root hairs as well, in that growth tak
place in the cap region as more of the cylindrical region is form
At a certain point,Acetabulariahas a transformation of the tip
region from nearly hemispherical to elliptical, as shown in F
1~b!. When the ratio of the width to heighta/b is greater then
about 1.4, an array of lateral shoots is initiated, as shown in
1~c!. Each of these will grow as in Fig. 1~a! and then perform the
change in Fig. 1~b! to produce more lateral shoots. The main ste
also repeats the cycle several times. Every pressure vessel
neer knows what happens when an elliptic head on a cylinder
a/b greater than 1.4. The circumferential membrane stress is c
pressive, and a ring of circumferential buckles, just as in Fig. 1~c!,
may occur. In pioneering work, Martynov@8# quantified the rela-
tion of elastic buckling to pattern formation. He showed that
Acetabulariathe physical properties and dimensions are suffici
to produce elastic buckles that are predictive of the numbe
shoots. Just by flattening the end cap, one obtains pattern from
pattern because of the buckling.

SoAcetabulariais a great motivation for considering the role o
stability for other plant patterns. However,Acetabulariais also a
great success for the reaction-diffusion theory. Harrison et al.@9#
and Harrison and Hillier@10# find that the dependence of th
pattern on temperature and calcium is close to that predicted
the theory. Dumais and Harrison@11# summarize the known facts
and theories onAcetabulariaand related algae and indicate th
the strongest case can be made for the diffusion theory. Howe
the mechanical consequences of the change from Fig. 1~a! to Fig.
1~b! cannot be ignored. The complete theory will undoubted
include both mechanical and electro-chemical effects.

A more complex shape is the sunflower, shown in Fig. 2~a!.
The double rows of spirals are clear. Typically in the sunflow
there are 55 spirals in the one direction and 89 in the other~two
successive terms in the Fibonacci series!. The distance between
the primordia is around ten cells, so the pattern concerns the ti
and not individual cells. Herna´ndez @12# shows a change of the
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cross section of the sunflower head, which is similar to that
Acetabularia. An almost hemispherical dome flattens to the sha
indicated in Fig. 2~b!. Of interest is the annular region of negativ
Gaussian curvature. The calculations for this by Wu@13#, using
the Fast4 shell of revolution program, produced the stress res
ants shown in Fig. 2~c!, with a significant compressive circumfer

Fig. 1 „a… Tip growth in the unicellular alga Acetabularia . The
growth takes place in the end cap, which is nearly spherical
„elliptical with aÕbÄ1.2 for this example …. The cylindrical por-
tion remains of constant diameter, equal to about 50 mm. The
load-bearing wall, composed mostly of mannan polymers, can
be seen as a thin transparent layer surrounding the tip. The
cytoplasm „dark granular region … and the central vacuole exert
a pressure of 7–10 atmospheres on the wall and thus provide
the driving force for elongation of the cell. „Photograph from
Dumais †14‡.… „b… In Acetabularia , the elongation stage stops at
regular intervals and the end cap changes from nearly hemi-
spherical to ellipsoidal „aÕbÄ1.9 for this example …. Here only
the wall is shown. When the ratio of radial to axial semi-major
axes of the ellipse reaches a value near 1.5, significant circum-
ferential compression occurs, which causes buckling of the
surface. „From Dumais and Harrison, †11‡.… This is just as in a
standard thin-walled pressure vessel. „c… Axial view of Ac-
etabularia after buckling. It appears that the compressive cir-
cumferential stress causes a buckling pattern that initiates the
development of an equally spaced array of lateral hairs. „Such
a symmetric pattern is called a whorl. … Subsequently, each lat-
eral hair elongates as in „a…. „From Dumais and Harrison †11‡.…

Table 1 Relation of pressure vessel to alga and plant

Pressure Vessel
Acetabularia

~one cell!
Sunflower Head

~many cells!

shell wall cell wall tunica layer
internal liquid/soft elastic material cytoplasm/vacuole corpus
viscous creep/thermal expansion growth growth
238 Õ Vol. 67, JUNE 2000
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ential stress in the negative curvature region. This is exactly
region in which the new primordia are forming. So the same pr
ciple seems to be working for the complex multicellular structu
as for one cell. Compression is needed for the generation of
tern. A confirmation of the compression is shown in Fig. 2~d!.
Dumais@14# made diagonal cuts across the primordial sunflow
head. The sides of the cuts in the center dome gape apart, ind
ing a region of tension, while the sides of the cuts in the annu
region of new primordia formation remain pressed together, c
sistent with the calculation.

Wu @13# carried out a number of calculations for local bucklin
some of which are reported in Green@15#. These were with Fast4
for the complete shell of revolution and for an elastic plate on
elastic foundation. The plate equations are the well-known v
Kármán equations~@16#!, but with an initial displacement tha
produces the nonlinear shallow-shell equations. Of interest is
result for a region with two initial hills, representing two primo
dia from the preceding generation. Adding sufficient compress
stress causes a buckle that appears approximately at the g
section between the two initial hills. Thus buckling seems to p
vide the local mechanism for generating the complex spiral p
terns such as in Fig. 2~a!. To see if this is effective on the globa
scale, subsequent calculations have been carried out by S
Rennich on the complete circular plate, as discussed in Gr
et al. @17,18#. The spiral patterns can indeed be generated by s
cessive buckling far into the post buckling regime, as shown
Fig. 3~a!. The calculation involves a standard perturbation pro
dure with suitable scaling of the perturbation steps to restrict
merical instability. For the linear calculation at each step, a F
rier series in the circumferential direction and finite difference
the radial direction is used. Since the steps must be small, the
calculation requires substantial time~hours on a work station!.
Sometimes in the calculation, one set of the spirals would be
and the pattern would degenerate into the ridges shown in
3~b!. This seemed to be a severe defect of the simple plate m
until the work by Carpenter et al.@19# appeared, that shows
mutant in snapdragon with this ridge behavior. So the stabi
calculation appears to have some predictive capability. A part
lar challenge to the stability analysis is the extreme pattern
Costus, described by Kirchoff and Rutishauser@20#, which is an
unusual ‘‘spiral’’ that looks more like a staircase. This is still
spiral in the generalized Fibonacci series~1,7,8, . . . !, according
to Jean@1#.

The main lack is that we have not shown how the spiral patt
can originate either de novo or as a transition from a whorl, wh
is the normal behavior in plants. In calculations with an init
random displacement of the surface, the whorled pattern will
pear but not spirals. Spirals can be obtained when approp
boundary conditions are prescribed. Indeed, in the calculatio
there seems to be nothing special about the Fibonacci pat
other numbers of spirals can propagate equally well. In nat
there is an indication that if the spiral pattern is lost, it is difficu
to reestablish. In the experiments of Herna´ndez and Palmer@21#, a
circular cut was made in the central dome of the sunflower
some distance from the ring of the new growth. Fast4 calculati
~@13#! show that circumferential compression occurs near
edges of the cut. So it is consistent that new growth occurs
both sides of the cut, but the spiral pattern seems to be lost. In
present work, Dumais has repeated the experiment and fou
tendency for the spiral pattern finally to reestablish, although
number of spirals is not a Fibonacci number.

What triggers and controls these changes? The change
whorl to spiral is common, and a change from one type of spira
another occurs in several plants. Kwiatkowska and Flor
Marwitz @22# catalog such transitions and show that they are
lated to changes in the area of the central dome. Thus the ge
etry is of importance. We wish to find to what extent such chan
in form can be related to changes in material properties. A
beginning to the question, we address in this paper a mutatio
Transactions of the ASME



Fig. 2 „a… Sunflower during the pattern development. The older florets are at the outer region, while the new florets are generated
at the rim of the inner smooth dome. Each new floret is at the ‘‘golden section’’ between those of the older generation, which
generates the spirals. „See Jean, †1‡.… At this stage, the sunflower head has a diameter of around 3–4 mm. „b… Shell model for the
sunflower. The outer layer of cells „tunica … have substantially thicker walls to withstand the internal pressure, in comparison with
the inner cells „corpus …. The region of the floret initiation has negative Gaussian curvature of the tunica. „Geometry from Herna ´n-
dez †12‡.… „c… Stress calculated for the shell model of the sunflower. The region of floret initiation has substantial compressive
stress in the circumferential direction shown by the shaded area. „From Wu †13‡.… „d… Effects of cuts across the sunflower
capitulum. The tension regions gape open, but the region of the floret initiation is pressed together because of the compressive
circumferential stress. „From Dumais †14‡.…
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snapdragon, and the change inAcetabulariafrom Fig. 1~a! to Fig.
1~b!. As a preliminary, however, we consider the basic question
whether the geometry of the plants is consistent with the poss
ity of mechanical instability.

2 Local Stability of a Layer
The emphasis in the preceding stability calculations was on

pattern and not on the physical relevance of the parameters.
key parameter is referred to in Green et al.@23,18# as the ‘‘natu-
ral’’ wavelength. This is the wavelength for minimum bucklin
load of a flat plate on an elastic foundation. Now, we wish
establish the physical basis for this natural wavelength. The m
consists of a sandwich plate, representing the tunica, on a
space, representing the corpus, as indicated in Fig. 4.

2.1 Half-Space Stiffness. In the preceding calculations th
foundation stiffness was taken as constant. Since the buck
Journal of Applied Mechanics
of
bil-

the
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g
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wavelength is usually small in comparison with the thickness
the corpus, the plant interior can be represented as a half-sp
For a half-space with a sinusoidal deformation on the surface w
the wavelengthl, the linear elastic equations can be solved for t
relation between the surface stress components and the disp
ment components. The relation can be written as a matrix of
face stiffness coefficients. For thez-axis normal to the surface, th
relation is for plane strain:

Fszz

szx
G5 2pE

l~11n!~324n! F2~12n! 122n

122n 2~12n!
G Fwu G (1)

in which E is Young’s modulus, andn is Poisson’s ratio. For
plane stress the result is

Fszz

szx
G5 2pE

l~11n!~32n! F 2 12n

12n 2 G Fwu G . (2)
JUNE 2000, Vol. 67 Õ 239
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For an incompressible materialn50.5 and for the tangential dis
placementu set to zero, Eq.~1! gives the ratio of the normal stres
and the normal displacement, which is the equivalent elastic fo
dation stiffnessk for the half-space:

Fig. 3 „a… Comparison of the actual sunflower „left … and com-
putations „right …. The computation is with the use of the von
Kármán equations for a plate on an elastic foundation. The
plate is compressed by a uniform radial edge force. The plate is
initially flat, but edge conditions on the rotation are prescribed
that have the spiral pattern. For subsequent buckling, the spiral
pattern propagates toward the center, as shown. Typically, the
distance between calculated buckles is about twice the natural
wavelength. „Calculation by S. Rennich, color enhancement of
figure by J. Dumais, from the cover of the American Journal of
Botany , July, 1999. … „b… Calculation of plate post-buckling, in
which spiral pattern degenerates into ridges. The distance be-
tween ridges is about equal to the natural wavelength. „Calcu-
lation by S. Rennich. …
240 Õ Vol. 67, JUNE 2000
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4pE

3l
5k. (3)

Of course, the value ofk is dependent on the wavelengthl.

2.2 Plate on Half-Space. For a sinusoidal displacement of
plate on an elastic foundation, the critical compressive force
sultant is

N5DS 2p

l D 2

1
k

S 2p

l D 2 (4)

where D is the effective bending stiffness of the plate. For t
foundation stiffnessk, a known value, the minimum of Eq.~4!
occurs at the wavelengthl52pAD/k. If the foundation for the
half-space Eq.~3! is used, then the minimumN occurs at the
wavelength

l52pS 3D

EH
D 1/3

(5)

and has the value

Ncr5~3DEH
2 !1/3. (6)

For the dimensions in Fig. 4, and if the structural material in
walls of the cells and the plate is the same~cellulose!, then the
bending stiffness and half-space modulus are

D'
2

3
Et2t f ; EH'E2

tw

L
(7)

and Eq.~5! gives the critical wavelength

l

t
52pS f

3D 1/3

(8)

where the geometric factor is

f '
6t f

t

L

tw
(9)

and Eq.~6! gives the critical compressive strain

Ncr

E2t f
5S 36

f 2 D 1/3

. (10)

2.3 Relation to Plant Patterns. In an unpublished study
initiated by C. Schmid and continued by J. Dumais, micrograp
available in the literature for a wide variety of plants were exa
ined. The result for the wavelength, i.e., the distance betw

Fig. 4 Representation of a plant by an elastic layer, consisting
of a sandwich plate representing the tunica, attached to an
elastic half-space, representing the interior cells „corpus …. The
compressive force N in the tunica causes a buckling deforma-
tion, indicated by the dashed line, with the wavelength l. The
thickness of the tunica is t , the thickness of the walls of the
tunica is t f , the thickness of the interior cell walls is t w and the
cell diameter is L .
Transactions of the ASME
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primordia, as a function of the total tunica thickness is shown
Fig. 5. Except for four plants, there is a remarkably linear cor
lation. A precise determination of thickness and the cellulose c
tent of walls is impossible from the general micrographs of
cross section. However, it appears that the ratio of tunica th
ness to wall thickness is greater than the ratio of interior cell w
to cell diameter, so a lower bound on the factor Eq.~9! is f 56.
Added to Fig. 5 is the relation Eq.~8! for the ‘‘reasonable’’ value
of f 510 and for a large value off 5100. These bound most of th
measured values.

Generally, the wavelength between buckles in the calcula
Fig. 3~a! is roughly twice the natural wavelength. So it seems t
the results in Fig. 5 showing the actual pattern to be at a lon
wavelength than the ‘‘reasonable’’ value off 510 is consistent
with the calculations. However, when the buckles degenerate
ridges such as shown in Fig. 3~b!, the ridges are at the natura
wavelength, since the solution is nearly one-dimensional betw
ridges. The actual dimensions for the developing plants Fig
seem consistent with the concept that the pattern is a consequ
of the stability of the surface.

3 Stability of Constrained Ring
As a first study of the possible relation of mechanical proper

to form, the snapdragon is considered. In snapdragons, stam
originate as five symmetric vertical undulations in an annu
~Fig. 6~a!!. In thedeficiensmutation, a comparable annulus und
lates horizontally, making a wavy ribbon with five folds~Fig.
6~b!, as discussed by Green@24#!. To see whether this change i
form might be related to a change in the mechanical proper
we consider the stability of an elastic ring constrained from rad
expansion, similar to a doughnut inside a rigid coffee cup. T
wall of the cup restricts any outward radial displacement of
ring. In addition, a uniform elastic foundation connects the ring
the bottom of the cup, which constraints axial displaceme
Growth is simulated by a uniform heating of the ring. As t
temperature increases, the stress in the ring increases until a
cal condition is reached, after which the ring will no longer r
main in the original shape. The stress will be released by a de
mation of the ring that could be out of the initial plane of the rin
as shown in Fig. 6~c! or that could consist of an in-plane defo
mation, as shown in Fig. 6~d!. The following analysis is routine
but the results may be of significance in understanding the be
ior of plants, so the details are included.

Fig. 5 Relation of observed peak to peak distance between
primordia and the tunica thickness. The dotted line is the best
fit, with a slope 14.1. The dashed lines show the natural wave-
length for a plate on an elastic substrate with relative volume
fractions of fÄ10 and 100. Generally, there seems to be little
difference in the whorl and spiral patterns. „Data collected from
literature by C. Schmid and J. Dumais. …
Journal of Applied Mechanics
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3.1 Out-of-Plane Buckling. With the thermal heating of the
constrained ring, it is possible for the ring to accommodate
excess strain by deforming out of the plane of the ring, as in
cated in Fig. 6~c!. The analysis is based on the total potent
energy:

P5E
0

2pF1

2
~EI2k2

21GJk1
21ku3

2!2«EAaTGRdu (11)

in which R is the radius of the ring,u is the circumferential angle
E is the elastic Young’s modulus,A is the area,a is the coefficient
of thermal expansion,T is the temperature change,I 2 is the geo-
metric moment of inertia of the cross section about the a
through the centroid parallel to the plane of the ring, andGJ is the
torsional stiffness. The stiffness of the elastic foundation isk. The
twist is given by

k15
1

R S dx1

du
2x2D (12)

in which x1 is the rotation of the cross section, and the rotation
the orthogonal direction is

x252
1

R

du3

du
(13)

whereu3 is the out-of-plane displacement. The change of cur
ture measure is

k25
1

R S dx2

du
1x1D (14)

and the strain is from moderate rotation theory

«5
1

2
x2

2. (15)

The assumed displacement is

u35U cosnu (16)

with the rotation

Fig. 6 Buckling and organ shape. „A… Wild-type stamens „st …
in snapdragon. Creases traverse the formative zone, making a
ring of humps. „B… The deficiens mutant of snapdragon. The
formative region undulates in a plane as a ribbon, forming five
cup-like primordia. „C… Out-of-plane buckling mode for a thick
ring. „D… In-plane buckling of an elastic ring constrained by a
wall at the outer margin. „From Green †24‡.…
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x152
U

R
cosnu (17)

in which n is the harmonic index. The choice ofx1 reduces to
zero the high energy torsion term in Eq.~11!, leaving the potential

P5pRFEI2~n221!2
1

R4 1k2
EAaTn2

R2 G U2

2
. (18)

So for nonzeroU, the critical temperature is

aT5
R2

EA F k

n2 1
EI2

R4

~n221!2

n2 G . (19)

For n.1, the approximate minimum is at the harmonic index

n5RS k

EI2
D 1/4

5S R

Rg
D 1/2

h1/4 (20)

which gives the minimum out-of-plane buckling temperature

aTop5
2~kEI2!1/2

EA
52

Rg

R
h1/2 (21)

whereRg is the radius of gyration for the cross section and
dimensionless foundation stiffness factor is

h5
kR2

EA
(22)

3.2 In-Plane-Buckling. The analysis is based on the tot
potential energy given by

P5E
0

2pF1

2
~EI3k3

21EA«2!2«EAaTGRdu (23)

in which I 3 is the geometric moment of inertia of the cross sect
about the vertical axis. The strain from the moderate rotat
theory is given by

«5
1

R

du

du
1

w

R
1

1

2
x3

2 (24)

in which u is the displacement in the circumferential direction,w
is the displacement in the radial direction, and the rotation is

x352
1

R

dw

du
1

u

R
. (25)

The change of curvature measure is

k35
1

R

dx3

du
. (26)

The ring attempts to expand with increasingT, but is con-
strained by the wallw<0. An approximation for the stability limit
can be obtained by assuming a reasonable displacement s
function. The following consists of a uniform compression of t
ring and an inextensional sinusoidal deformation:

w5W~211cosnu! (27)

u52
W

n
sinnu (28)

in which W is the unknown amplitude. Substituting this deform
tion into the potential Eq.~23! yields the result
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P5pRH 1

2
EI3~n221!2S W

R2D 2

1EAF S W

R D 2

2S W

R D 3 ~n221!2

2n2 13S W

R D 4 ~n221!4

32n4 G
22EAaTF2

W

R
1~n221!2S W

R2D 2 1

4n2G J . (29)

The potential should have a minimum value for the equilibriu
solution. Setting the derivative ofP with respect toW to zero
yields the relation between amplitude and temperature:

W

R F EI3

EAR2

~n221!2

2
11G2

3

4 S W

R D 2 ~n221!2

n2

1
3

16 S W

R D 3 ~n221!4

n4 5aTFW

R

~n221!2

2n2 21G .
(30)

The solution procedure is to fix the harmonic indexn, then com-
pute the thermal strainaT as a function of the displacementw/R.
The minimum aT is the critical value at which the ring will
change from the compressed state to the buckled state. In Fig
shown that minimum thermal strain for each harmonic index. T
only parameter is the ratio of bending to stretching stiffness:

Rg

R
5S EI3

EAR2D 1/2

. (31)

For a thin-walled ring of circular cross section with radiusr, the
ratio is

Rg

R
5

r

R&
. (32)

The results in Fig. 7 show that the thicker rings, with larger valu
of the ratio, have a buckling mode with the harmonicn55. For
thinner rings,Rg /R,0.025, the critical value of thermal strai
decreases and the harmonic increases. The values of thermal
are excessive for the usual engineering problem, but for the an
gous problem of growth, such values may be reasonable.

3.3 Condition for Buckling Mode Change. For simplicity,
we consider the ring with circular cross section, for whichI 2 and
I 3 are equal. The critical temperature for in-plane instability Fig
depends on only the parameterRg /R, while the critical tempera-

Fig. 7 Thermal strain to cause in-plane buckling as a function
of the harmonic index. For a given value of geometry Rg ÕR, the
minimum gives the critical condition. For the thicker rings, the
critical condition stabilizes at the harmonic nÄ5.
Transactions of the ASME
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ture for out-of-plane instability Eq.~21! depends on the additiona
parameterh. However, if the critical harmonic indexn is pre-
scribed, then Eq.~29! gives the necessary value ofh, and the
critical out-of-plane temperature also depends only onRg /R:

aTop52n2S Rg

R D 2

. (33)

For the harmonicn55, the values of the out-of-plane bucklin
Eq. ~33! are lower than the in-plane values Fig. 7. Thus the o
of-plane mode Fig. 6~a, c! will be observed. Ifh is increased with
Rg /R held fixed, then the critical harmonic indexn and tempera-
ture for out-of-plane buckling will increase. For the case
Rg /R50.05, an increase inh of a factor of 4 is necessary t
change from the out-of-plane buckling to the in-plane buckling
n55. Similarly, for Rg /R50.1, h must increase by the factor o
2. Thus a modest change in the ratio of ring stretching stiffnes
foundation stiffness changes the buckling mode.

4 Model for Growth in Acetabularia
Now we show that the transition from Fig. 1~a! to Fig. 1~b! can

also be obtained by changing one physical parameter. We
sider the transformation of a shell from a hemispherical confi
ration, shown in Fig. 8~a!, to the shape shown in Fig. 8~b!, con-
sisting of a cylindrical portion with an end cap of the sam
geometry as the initial. The initial and current configurations
indicated by the capital and lower case letters. This represent
steady-state phase of the growth ofAcetabulariaas well as typical
root hairs~@25#!. Hejnowicz et al.@26# provide an Eulerian for-
mulation for the problem of the axisymmetric growth. Howev
we use a Lagrangian formulation. The current arclengths, mea-
sured from the bottom, is a function of the initial arclengthS. The
stretch ratio~growth! in the circumferential direction is

lu5
r ~s~S!!

R~S!
(34a)

and the meridional stretch ratio is

ls5
ds

dS
. (34b)

Denote the ratio of the stretches by

Fig. 8 „a… Initial hemispherical shell of radius a. The angle F is
measured from the apex and the arc length S is measured from
the equator. „b… Current configuration consisting of hemi-
spherical shell with a cylindrical extension added.
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Then Eq.~34a! and Eq.~34b! give the relation

E
0

s ds

f ~s!r ~s!
5E

0

S dS

R~S!
. (35)

Since the radius as a function of arclengthr 5r (s) completely
defines a surface of revolution, Eq.~35! yields a unique solution
for s(S). Thus for a given ratio of stretches, there is a uniq
mapping from one surface of revolution to another.

If the ratio of stretches has the constant valuef c in the cylin-
drical portion of the mapping in Fig. 8~b!, and instead of ar-
clength, the angle from the apex is used, Eq.~35! becomes

L

a fc
1E

w

p/2 r 1dw

f r
5E

F

p/2 R1dF

R
(36)

in which the subscript 1 denotes the meridional radius of cur
ture. Sincew5w(F,L), the derivative of Eq.~36! with respect to
L gives

]w

]L
5

r f

r 1f ca
(37)

and the derivative of Eq.~34a! gives the result

l̇u

lu
5

L̇

a

f

f c
cosw (38)

l̇s

ls
5

L̇

a

f

f c
S cosw1

r

f

d f

dsD (39)

where the dots denote the time derivative. So for any shape o
cap in steady-state growth, there is a simple dependence o
local grow rate on the angle from the apex.

Measurements of the tip growth by Chen@25# show a distribu-
tion that is roughly isotropic and approximated by the cos
variation. In the formulation of Hejnowicz et al.@26#, the growth
is in terms of the radius as a function of the axial length, for wh
the simple relations Eqs.~38! and ~39! are not apparent.

4.1 Hemisphere. For the shape of the hemisphere in Fi
8~a! and Fig. 8~b!, the current angle as a function of arclength

w5H p

2
for 0<s<L

p

2
2

s2L

a
for L,s<L1a

p

2

(40)

and the radius is

r 5a sinw. (41)

Thus Eq.~35! yields the solution for the current angle in terms
the initial:

w5H p

2
for 0,F<FL

2 acot
cotF/2

cotFL/2
for FL,F<

p

2

(42)

whereFL is the value of the initial angle that maps to the equa
of the current configuration:

FL52 acotS exp
L

aD . (43)

So for largeL, the transition angleFL becomes small, and most o
the initial hemisphere has mapped into the cylindrical portion
the current configuration.
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The results can be expanded for small values ofL/a, which
yields the results

w'F1
L

a
sinF (44a)

sinw'sinFS 11
L

a
cosF D (44b)

l'11
L

a
cosF. (44c)

So the rate of growth for increasing lengthL has a simple cosine
distribution:

l̇'
L̇

a
cosF, (45)

which agrees with the general result Eq.~38!
Due to the turgor pressure of 7–10 atmospheres, there is

stantial membrane stress in the surface. The stress is constas0
in the hemisphere, and the circumferential stress in the cylinde
twice as much. A simple mechanical model would have mate
with the same properties at every point of the wall. The grow
rate due to the addition of material to the wall from the cytopla
would be a function of the local stress. So, the cosine distribu
Eq. ~45! in a region of constant stress seems to be inconsis
with such a simple model. However, the matter deserves fur
study.

4.2 Perturbed Shapes. Small changes in the initial and cur
rent shapes can be considered in the form

r ~w!5~a sinw!@11h~w!# (46a)

R~F!5~a sinF!@11N~F!#. (46b)

Equation~35! gives the perturbation result for the angle

w'F1b (47)

in which

b5FL

a
1E

F

p/2 1

cosF

d

dF
~h2N!dFGsinF

and the stretch ratio

l'11FL

a
2E

F

p/2 sinF

~cosF!2 ~h2N!dFGcosF. (48)

This also agrees with the general result Eq.~38! when the current
shape is the same as the initialh5N.

For the stress, additional geometry is needed. The circumfe
tial and meridional radii of curvature for the perturbed shape
~46a! are

r 25
r

sinw
'a@11h~w!# (49a)

r 15
1

cosw

dr

ds
'aF11h~w!1tanw

dh

dwG . (49b)

Therefore the current membrane stress resultants in the circum
ential and meridional directions are

Nu5
pr2

2 S 22
r 2

r 1
D'

pa

2 F11h1tanw
dh

dwG (50a)

Ns5
pr2

2
'

pa

2
@11h# (50b)

in which p is the turgor pressure. The resultant for the unpertur
hemisphere is
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N05
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2
. (50c)

Thus the perturbation of the hemispherical shape causes a
isotropic stress state. So, consistent with an isotropic growth,
mean stress is used:

N̄5
Ns1Nu

2
'N0F11h1

1

2
tanw

dh

dwG . (50d)

Thus the shear stress is assumed to not effect the growth.~See Fig.
9.!

4.3 Rate Equation. A linear relation between growth rat
and mean stress is

l̇5l̇0F11gS N̄

N0
21D G (51)

where l̇0 and g are constants as indicated in Fig. 10. For
interpretation, the growth is considered to be resisted by a fric
term and a viscosity, inversely proportional tog. For high values
of the mean stress, saturation occurs. The time derivative of
~48! and the stress from Eq.~50d! substituted into Eq.~51! yields
the linear differential equation for the perturbation shape funct
h:

Fig. 9 „a… Perturbation of hemispherical shell by the radial dis-
placement of magnitude h. „b… Elliptical end cap with semi-
major and minor axes a and b .

Fig. 10 Growth rate as a function of local mean stress for a
simple, purely mechanical model. Growth occurs between a
threshold value T and a saturation value of 1.5. For the spheri-
cal and elliptic caps, the stress is near N0 , and the slope of the
curve has the positive value g. For the cylindrical region, the
effective stress is higher by a factor of 1.5, and growth does not
occur. The value T could represent an initial frictional resis-
tance, while g is the inverse of the effective viscosity.
Transactions of the ASME
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F L̇

a
2E

w

p/2 sinw

~cosw!2 ḣdwGcosw5l̇0F11gS h1
1

2
tanw

dh

dw D G .
(52)

4.4 Steady-State Growth. If the time variation inh is de-
leted from Eq.~52!, then the equation for steady-state growth
obtained:

L̇

a
cosw5l̇0F11gS h1

1

2
tanw

dh

dw D G (53)

which has the exact solution

h5
1

g
F 2L̇

3l̇0a
g~w!21G (54)

where the functiong is

g~w!5
11cosw1~cosw!2

11cosw
(55a)

which can be expanded in terms of cosines of even multiplesw

g~w!5
4

p
14S 10

3p
21D cos 2w28S 12

47

15p D cos 4w1 . . .

(55b)

51.273210.2441 cos 2w20.02103 cos 4w

10.00483 cos 6w1 . . . (55c)

Thus the function is reasonably approximated by the first t
terms. After dropping the others, then

g~w!'4S 12
7

3p D18S 10

3p
21D ~cosw!2. (55d)

Now the rate can be chosen to make the constant term in
solution Eq.~53! equal to zero:

l̇05
8

3 S 12
7

3p D L̇

a
50.686

L̇

R0
, (56)

and the only term remaining in the solution is

h5
1

g

L̇

l̇0a

16

3
S 10

3p
21D ~cosw!25

k

2
~cosw!2 (57)

which gives exactly the perturbation from a spherical to an el
tical surface Fig. 9~a!, for which the parameterk is related to the
major and minor semi-axes

k5
a2

b221'2
~a2b!

a
. (58)

Using Eq. ~56! in Eq. ~57!, this gives the product of the
parameters:

kg54
S 10

3p
21D

S 12
7

3p D 50.949. (59)

From these results the conclusion is that a steady-state gr
is possible for an elliptic perturbation from the hemisphere. Si
there is no growth in the cylindrical region, the relation betwe
growth rate and stress must have the form indicated in Fig.
The form Eq.~51! is the region nearN0 with the positive slopeg.
The amplitude of the ellipticityk is inversely proportional tog,
Journal of Applied Mechanics
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Eq. ~59!. Thus for high values ofg, the deviation from the hemi
spherical shape is small. The steep slope means that the g
rate can vary considerably at different points with little change
the stress, which justifies the hemispherical result Eq.~45!.

The shape of the end cap is independent of any vertical sh
the curve, since this is done with a change inl̇0 , which only
affects the elongation rateL̇ as given by Eq.~56!. In fact, l̇0 can
be an arbitrary function of time and the shape given byh remains
the same. To change the shape, the slopeg must be changed. So
change from a nearly spherical cap to an elliptic cap can be
complished by simply decreasing the value ofg. The actual tip in
Fig. 1~a! has a/b51.2, which is a little large for quantitativ
accuracy of the perturbation analysis. However, this shape g
k50.49 and from Eq.~59! the valueg51.9. The flattened shap
in Fig. 1~b! is beyond the perturbation analysis but would cor
spond to a small value ofg.

4.5 Stability of Solution. By dividing Eq. ~52!, by cosw
and taking the derivative, the equation can be written in the s
dard form

p
d

dw
S 1

p

dy

dw
D 2

2

l̇0g
ẏ52

2

g
~sinw!2 (60)

in which

p5sinw~cosw!2

y5~sinw!2h.

The nonhomogeneous term in Eq.~60! yields the steady-state so
lution Eq. ~54!. For p constant this is the same equation as fo
string under tension attached to a viscous foundation. The v
tion in the coefficient does not affect the stability of the syste
This can be most easily seen by a ‘‘WKB’’ asymptotic appro
mation for the homogeneous equation, valid for small values og,
which is

y'p1/2 expS 6 i
w

Al̇0gt/2
2

t

tD (61)

in which t is an unknown decay time. This approximation is s
gular at w50. However, a uniformly valid solution can be o
tained in terms of the Bessel function

h'
w1/2 cosw

~sinw!3/2
J1S w

Al̇0gt/2
D expS 2

t

t
D . (62)

With Eq. ~62!, the approximation for the spectrum of eigenvalu
of the decay time is

tn'
1

2n2l̇0g
for n53,4, . . . . (63)

Each mode has a positive decay time. Since the set of mod
complete, any perturbation will have a positive decay time and
system is stable for positiveg.

Measurements of the tip of the root hair by Chen@25# indicate
a shape that is elongated, i.e., withk,0. The present model eve
with various extensions fails to yield a stable growth withk,0,
unless a variation along the meridian in the material propertie
prescribed. So this is an unresolved feature.

4.6 Change in Turgor Pressure. An approximate solution
can be obtained for a small change in the internal pressure.
solution is taken in the form Eq.~57! with k as a function of time.
Then Eq.~52! splits into terms that are constant inw and those
varying with cos 2w, giving the coupled equations

L̇

a

2

p
2

k̇

4
5l̇0F11gS p

p0
21D G (64)
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L̇

a

4

3p
2

k̇

4
5l̇0g

k

2
(65)

in which p is the new value of internal pressure. Eliminating t
axial length changeL gives the equation fork:

t k̇1k5
4

3g F11gS p

p0
21D G (66)

in which the decay time ist51/(6l̇0g). The solution is

k5
4

3g F11gS p

p0
21D ~12e2t/t!G . (67)

This indicates that the ellipticity increases with an increase in
internal pressure. Interesting is the axial growth rateL̇:

L̇

a

2

p
5l̇0F11gS p

p0
21D ~112e2t/t!G (68)

which has a jump due to the step in pressure. This is exactly
behavior reported in Green@27# in a different type of cell that
grows uniformly along its length, rather than at the tip. It is inte
esting that the present analysis of the tip growth with the loca
linear relation between growth rate and stress in Fig. 10 produ
similar results. Indeed a good fit of the results in Green@27# can
be obtained with Eq.~68! with reasonable values ofg about 10
andt about 30 minutes.

4.7 Change in Material Property. A similar analysis can
be carried out for the response of the cell to a sudden chang
the parameterg without a change in turgor pressure. The resu
for the ellipticity and the axial growth rate are

k5
4

3g F11S g

g0
21De2t/tG (69)

L̇

a

2

p
5l̇0F122S g

g0
21De2t/tG . (70)

Thus, as before, the ellipticity changes continuously with the
cay timet, and the axial growth rate has a jump. For a decreas
g from the previous valueg0 , the axial rate has a negative jum
and then resumes the old value.

5 Conclusion
Pattern formation in plants is an exceedingly complex subj

However, it appears that the stability of the surface may pla
fundamental role. With the high turgor pressure, compression
curs in the formative zone due to the geometry, as inAcetabularia
Fig. 1~b! and the sunflower Fig. 2~d!. In other situations, growth
of the surface with peripheral constraint produces compres
Fig. 6. The physical properties of geometry and elastic moduli
consistent with the production of elastic instability, as shown
Martynov @8# for Acetabulariaand by Fig. 5 for a wide variety of
plants.

The analysis of a constrained elastic ring subject to an incre
in temperature, which simulates uniform growth of a plant in
annular region, shows that both in-plane~horizontal! and out-of-
plane~vertical! modes of instability are possible. One parame
controls the choice for the preferred mode. This parameter is
ratio of stiffnesses of the elastic foundation and the ring wall. F
the plant, the elastic foundation simulates the corpus and the
simulates the tunica. For the relatively modest change in this r
of a factor 2–4, the mode changes from the out-of-plane to
in-plane. Thus a prominent shape alternative can be accounte
by changing the value of a single material property, which co
be genetically determined.

The change inAcetabulariafrom an efficient pressure vess
shape Fig. 1~a! to a less efficient shape Fig. 1~b!, which has higher
stress and a compressive region, is at first hard to unders
246 Õ Vol. 67, JUNE 2000
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However, an analysis of the growth process, with a locally lin
relation between growth rate and stress, shows that the ellipt
of the tip region depends on a single mechanical property
dynamic stability analysis indicates that the steady-state grow
stable. The equations couple the tip shape and the axial gro
rate. With this coupling, a step decrease in internal press
causes a ‘‘shock,’’ consisting of a step decrease in the axial
that recovers with time. This is similar to the measurements
Green @27# on the diffuse growth of the internodal cell of th
green algaNitella. We predict that similar behavior will occu
with tip growth.

There are many things falling into place which reinforce t
conjecture that the physical stability of the surface plays a
role in plant pattern formation. It is not just a matter of providin
a set of equations that can produce a pattern. As argued by G
@24#, there is a close interaction between the mechanics and g
expression to produce the stunning variety of plant patterns.
using the mechanics, the task for the genes is simplified in
only the physical properties and boundary conditions need be
up; the pattern comes out as a consequence. The buckling m
fies the stress field which can trigger the expression of genes
are important for the subsequent stages of growth and pa
formation.
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A Parametric Model for a Class of
Foam-Like Isotropic Hyperelastic
Materials
A parametric model for foam-like materials is proposed and its correlation with exp
mental results is analyzed. The class of foam-like materials is assumed to be descri
an isotropic elastic potential based on a general model proposed by Ogden. The cl
parametrized using the relative mass density of the material. Functional relations bet
material parameters and the relative mass density are obtained from experimental d
simple application problem, namely the optimization of a foam for maxim
energy absorption under homogeneous compression, is formulated and solved n
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1 Introduction
As pointed out by Ashby@1#, structural materials commonly

encountered in nature, such as wood or bone, belong to the
of cellular solids, i.e., materials that at a relatively small leng
scale are composed of cells whose geometry consists of ‘‘wa
made out of a ‘‘dense’’ solid material and the rest is ‘‘void
~filled with some fluid!. Ashby also highlights the connection be
tween this type of geometry and its optimality in terms of stren
and weight. Other examples of cellular solids include synthe
materials such as open-cell elastomeric foams, which are c
monly used in a variety of practical applications. In particul
foams are often used in energy-absorbing devices and their r
of operation often includes large deformations~see, e.g., Maiti
et al. @2#!. Roughly speaking, models for foams can be divid
into two large groups: models based on the foam’s microstruc
and phenomenological models. A model based on the foam’s
crostructure that has received wide attention is the one develo
by Gibson, Ashby, and co-workers~see Gibson and Ashby@3#!.
The Gibson-Ashby model comprises two distinct functional re
tions for the range of deformations~linearly elastic and nonlin-
early elastic—the latter referred to as the plateau/densification
gion!. This is essentially a one-dimensional model~for uniaxial
compression!, however, it is not clear how to extend it to a thre
dimensional setting for the nonlinear range. Also, from a com
tational point of view, it would be difficult to keep track of eac
region in a three-dimensional deformation.

Commonly used phenomenological models in finite elastic
are based on the stored energy potential proposed by Blatz an
@4# or, more generally, in expressions for compressible hypere
tic materials developed by Ogden@5#. However, neither the
Blatz-Ko nor the Ogden potentials include any explicit inform
tion related to the microstructure of the foam. Nonetheless,
information, as shown by Maiti et al.@2#, can be useful for design
purposes. The aim of the present work is to introduce a chara
istic parameter of the microstructure into the phenomenolog
constitutive information. Experimental results show that the re
tive mass density of anisotropic elastic foam plays an essenti
role in the response function. This parameter is perhaps the
plest characteristic feature of the microstructure and can be

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the ASME Applied Mechanics Division, June 30, 19
final revision, Oct. 30, 1999. Associate Technical Editor: J. T. Jenkins. Discussio
the paper should be addressed to the Technical Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
248 Õ Vol. 67, JUNE 2000 Copyright © 20
lass
th
ls’’
’’
-
th
tic

om-
r,
nge

ed
ure
mi-
ped

la-

re-

-
u-

h

ity
Ko

las-

a-
his

ter-
cal
la-
l
im-
sed

to describe a whole class of materials with a single functio
relation. The model proposed here is essentially an extensio
Ogden’s potential and is applicable for large three-dimensio
deformations. It comprises a single functional relation that c
describe the behavior of foam-like materials. One of the moti
tions for the present model is to analyze design problems wh
one anticipates large three-dimensional deformations and w
the objective is to determine an optimal distribution of relati
mass density throughout an energy-absorbing device. Since
model includes the relative mass densityr as a parameter, thenr
can be naturally used as an optimization variable.

The outline of the paper is as follows: In Section 2 some ba
notation and definitions are introduced; in Section 3, a spec
class of stored energy functions—used to describe the behavi
elastic foams—is considered; the asymptotic behavior of
model for small deformations is analyzed in Section 4. Uniax
homogeneous deformations are included in Section 5 and the
lidity of the model is studied in Section 6 where a parametrizat
of the model with respect to the relative mass density is deri
based on experimental data. A simple application problem—
optimization of an energy-absorbing foam—is analyzed in Sec
7. Some final remarks and conclusions follow in the last secti

2 Preliminaries
An essential parameter that describes the microstructure

foam is its relative mass density that is defined byr (X)
5r0(X)/rs , wherer0(X) is the mass density of the foam at
point X in an undeformed stress-free reference configuration
rs is the density of the solid material from which the foam
made. The parameterr, 0,r<1, describes at a continuum leve
the ~average! volume fraction occupied by the dense solid ma
rial in a representative unit cell at a microscopic level. Now, co
sider a~possibly! nonhomogeneous body that occupies a reg
V0 in its reference configuration and letx~X! be a smooth defor-
mation. The deformation gradient is defined
F5F~X![Gradx~X! and it is assumed that the Jacobian of t
deformation is positive, i.e.,J5J(X)[detF(X).0, ;XPV0 .
The polar decomposition of the deformation gradient isF5RU
5VR, whereR is the rotation tensor~detR51! and U, V are,
respectively, the right and left stretch tensors. The class of fo
considered here is assumed to beisotropic and represented by a
stored energy density that depends on the stretch tensor an
relative mass density, i.e.,W5Ŵ(U;r ), with Ŵ(I ;r )50. Observe
that the nonhomogeneity of the body enters this formulation o
implicitly via the relative mass density. From the requirement
objectivity ~and from the assumption of isotropy!, the stored en-
ergy density must satisfyŴ(U;r )5Ŵ(QUQT;r ), ;QPO(3),
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whereO(3) is the group of orthogonal tensors. As a conseque
of this, Ŵ depends onU only via its isotropic invariants. Hence
the arguments of the stored energy function are: the relative m
density r and any set of three independent invariants ofU ~or,
equivalently, ofV!. In particular, a useful functional expressio
for W is provided byW5W̄(l1 ,l2 ,l3 ;r ), whereW̄ is a symmet-
ric function of the principal stretches. In terms of the stored
ergy functionW̄, the Cauchy stress tensor is given by

s5
1

J (
k51

K

lk

]W̄

]lk
RPkR

T, (1)

wherelk , ~k51, . . . ,K, andK<3!, are thedistinct eigenvalues
of the stretch tensors~i.e., U5(k51

K lkPk , V5(k51
K lkRPkR

T,
and the correspondingPk are projectors2 of U!. The first Piola-
Kirchhoff stress tensor is given byS5JsF2T.

3 Specific Constitutive Relationships for Foams

The form ofW̄ assumed here is based on a general expres
for the stored energy function of compressible materials propo
by Ogden@5#, i.e.,

W̄~l1 ,l2 ,l3 ;r !5(
i 51

N

$2mi~l1
a i1l2

a i1l3
a i23!

1ni@~l1l2!b i1~l2l3!b i1~l3l1!b i23#

1pi~J2g i21!%, (2)

whereJ5l1l2l3 and

pi5
2~mia i1nib i !

g i
, ; i P@1,N#. (3)

In ~2!, N>1 is a number chosen depending on the required ac
racy of the model. The form of the parameterspi follow from the
requirement of a stress-free undeformed~reference! configuration.
In order to introduce a functional dependence on the relative m
density, it is assumed that the material parametersa i , b i , g i ,
mi , and ni are functions ofr, i.e., a i5â i(r ), b i5b̂ i(r ), g i
5ĝ i(r ), mi5m̂i(r ), ni5n̂i(r ). It is worth mentioning that even
though the above functions are referred to as material parame
the relevant mechanical behavior of the material described by~2!
is characterized by the derivative of the stored energy~i.e., the
functionsâ i , etc., do not necessarily have a physical meaning
se!. The derivative ofW̄ with respect to the principal stretches

]W̄

]lk
5(

i 51

N H 1

lk
@2mia ilk

a i1nib ilk
b i~l l

b i1lm
b i !

22~mia i1nib i !J
2g i#J l ,mÞk, (4)

wherek, l, m range in$1,2,3%. The stored energy~2! can be ex-
pressed alternatively as

Ŵ~U;r !5(
i 51

N

@2mi~ tr Ua i23!1ni~ tr CofUb i23!

1pi~J2g i21!#, (5)

where, sinceU is symmetric positive definite, CofUb i5(CofU)b i

5Jb iU2b i.
Specific functionsâ i , b̂ i , ĝ i , m̂i , and n̂i appropriate for

foams are described in Sections 4 and 6. However, it is wo
noting a few facts here: In order to guarantee the existenc
solutions to boundary value problems, it is useful to consi

2The projectors satisfy the following relations:(k51
K Pk5I ~whereI is the second-

order identity tensor!, Pk•Pl[tr(PkPl)50 for kÞ l and trPk5multiplicity of lk .
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some restrictions on the form of the stored energy~5!. Specifi-
cally, it is assumed that the stored energy is polyconvex and
satisfies a growth condition~see, e.g., Ball@6# and Dacorogna
@7#!. Polyconvexity is assured if there exists a functionWp such
that Wp(U,CofU,J;r )5Ŵ(U;r ) and Wp is convex inU, CofU
and J for every r. Thus, for the potential~5!, polyconvexity is
satisfied if, ; i P@1,N#, one hasmia i(a i21)>0, nib i(b i21)
>0 and pig i(g i11)52(mia i1nib i)(g i11)>0. Moreover, to
guarantee existence of solutions, it is sufficient to impose
growth condition of the formWp(U,CofU,J;r )>c11c2(iUiq1

1iCofUiq2), wherec1PR, c2.0, q1>2, q2>q1 /(q121) and

iUi[AU•U5Atr U2 ~see Ball and Murat@8#!. In this case, the
growth condition is satisfied if

a i>2, b i>
a i

a i21
, mi.0, ni.0, ; i P@1,N#, (6)

which implies polyconvexity if g i>21. In ~5!, the term
( i 51

N pi(J
2g i21)—which measures the change of energy due t

change of volume—is required to tend to1` as J→01. This
condition is imposed so as to assign an infinite amount of ene
in order to compress a body to a single point. Thus, it is assum
that

' j P@1,N#:g j.0. (7)

Observe that if the material is polyconvex, thenŴ→1` as J
5l1l2l3→1` for smooth deformations, even though
( i 51

N pi(J
2g i21)→2( i 51

N pi when allg i are strictly positive. It is
noted that the generalized Blatz-Ko material is a special cas
~5! with N52 andm151/4m0f , m251/4m0(12 f ), n15n250,
a152, a2522, g152n0 /(122n0) and g252g1 , where m0
andn0 are, respectively, the shear modulus and Poisson’s ratio
small deformations andf is a parameter presumably related to t
volume fraction of voids—although not equal to it~see Blatz and
Ko @4#!. Hence, for f Þ1, the generalized Blatz-Ko potential i
polyconvex if 1/4<n0,1/2 but does not satisfy the growth con
dition sincea2,0. For the special casef 51, the Blatz-Ko poten-
tial is polyconvex for any value ofn0P(21,1/2) and satisfies the
growth condition~see Horgan@9# for a discussion on the loss o
ellipticity of the Blatz-Ko potential!. It is noted in passing that the
special caseni50, g i5a id, ; i P@1,N# can be viewed as a gen
eralization of the Blatz-Ko potential. In this case, the stored
ergy becomes

Ŵ0~U;r !5(
i 51

N

2miF ~ tr Ua i23!1
1

d
~J2a id21!G .

The limit cased→0 for this special potential can be useful fo
materials that, for example, have a negligible lateral displacem
for uniaxial compression.

4 Asymptotic Analysis for Small Deformations
Experimental results for foam-like materials in the range

small deformations are relatively well characterized. Hence, i
convenient to describe the behavior of a material given by~5!
under small deformations since it must match the experime
results. To this end, consider the expansion of the stored energ
terms of the Lagrange strain tensorE51/2~C2I !. From ~5!, the
stored energy is given byW(E;r )51/2l0(tr E)21m0 tr E2

1O(iEi3), where the Lame´ moduli are given by

l05(
i 51

N

~nib i
21pig i

2!, 2m05(
i 51

N

~2mia i
21nib i

2!, (8)

hence the corresponding bulk modulusk0 is, on using~3!,

3k05(
i 51

N

2@mia i~a i13g i !1nib i~2b i13g i !#. (9)
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The corresponding Saint-Venant–Kirchhoff approximation is o
tained by neglecting higher order terms ofW(E;r ). The second
Piola-Kirchhoff stress tensor (T[F21S) for the Saint-Venant–
Kirchhoff material can be expressed asT5]W/]E5l0(tr E)I
12m0E. Formally, the linearization of the Saint-Venant
Kirchhoff material~Hooke’s law! can be obtained upon replacin
the Lagrange strain by the infinitesimal strain in the previous
pression forT ~in which case all stress measures are equivale!.
In order to guarantee that the material is stable under linear
turbations from the reference state it is required that 3k0.0,
2m0.0. These conditions naturally impose restrictions ona i ,
b i , g i , mi , andni , however, it is noted that such requiremen
do not guarantee~nor it is assumed! stability for large deforma-
tions. It is also worth to point out that, for the special caseni
50, g i5a id, ; i P@1,N# and sincen05l0 /(2(l01m0)), it fol-
lows from ~8! that n05d/(112d), which is independentof a i
andmi .

Experimental results and models based on simple microge
etries suggest that for open-cell elastomeric foams in thelinearly
elastic range, Young’s modulusE0 and Poisson’s ration0 depend
on the relative mass density as follows:E05Ê0(r )5Esr

2, n0
5 n̂0(r )51/3, whereEs is equal to the dense solid material
Young modulus~see Gibson and Ashby@3#!. Observe that, as a
first approximation, the Gibson-Ashby model assumes that P
son’s ratio does not depend on the relative mass density, whic
equivalent to assume that bothk0 and m0 depend on thesame
power ofr. Since 2m05E0 /(11n0) and 3k05E0 /(122n0), the
Gibson-Ashby model corresponds to

K̂1~r ![3k̂0~r !53Esr
2, K̂2~r ![2m̂0~r !5

3
4 Esr

2, (10)

where K15K̂1(r ) and K25K̂2(r ) are the so-called Kelvin
moduli. It is also noted that, from a theoretical point of view,
would be more appropriate to find from twoindependentexperi-
mental tests the dependence with respect to the relative mass
sity of the Kelvin moduli.

The functionsm̂i and n̂i can be suitably prescribed in order
asymptoticallymatch the present model with these experimen
results ~whereas the functionsâ i , b̂ i , and ĝ i can be used to
describe the nonlinear range!. In view of (8)2 , ~9! and ~10!, the
functionsm̂i and n̂i can be chosen in various ways~in terms of
a i , b i , g i , K1 , andK2! in order to have an asymptotic agre
ment. However, for the special caseN51, the correspondence i
uniquely determined as follows:

m5
1

6a F2~2b13g!K22bK1

ab2g~b22a! G ,
(11)

n5
1

3b FaK12~a13g!K2

ab2g~b22a! G .
For the caseN51, one can determine explicitly the ranges of t
valuesa, b, andg that satisfyboth the growth conditions~6!, ~7!
and linear stability about the undeformed configuration.~The
growth conditions are sufficient in order to guarantee polyconv
ity.! The admissible regions can be obtained from the requirem
K1 , K2.0 and Eqs.~6!, ~7!, and ~11!. To determine these re
gions, it is convenient to study three cases:K̄P(0,1#, K̄P(1,4#,
and K̄P(4,1`) where K̄5K1 /K2 . Note that the limits of the
intervals for K̄ correspond to, respectively,n0521, n050, n0

51/3 andn051/2. It is found that for the rangeK̄P(0,1# ~i.e.,
n0P(21,0#! it is not possible to satisfy the growth condition. F
the other cases, the admissible regions are as follows: foK̄
P(1,4#: a>2, b>a/~a21! and 0,g,gA ; for K̄P(4,1`):
a>2, b>a/~a21! and gA,g,gB if 2a/b,(K̄24)/(K̄21) or
gB,g,gA if 2a/b.(K̄24)/(K̄21), wheregA5(a/3)(K̄21)
andgB5(b/6)(K̄24).
250 Õ Vol. 67, JUNE 2000
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It is worth mentioning that one can use other models for op
cell elastomeric foams in the linearly elastic range instead of G
son and Ashby’s model~see, e.g., Warren and Kraynik@10# where
the Kelvin moduli do not depend on the same power ofr!. If one
wishes to use Warren and Kraynik’s model, the asymptotic ma
ing presented in this section should be modified accordingly. F
thermore, in view of the previous analysis, if negative Poisso
ratio values are considered in the model for small deformati
~which has been observed in certain foams!, one has to keep in
mind that polyconvexity~and existence of solutions! is not neces-
sarily guaranteed forN51.

5 Uniaxial Deformations
In preparation for the analysis of experimental data it is use

to derive explicit formulas of the stress-stretch relations for sim
homogeneous uniaxial deformations. Formulas for other mode
homogeneous deformations such as bi-axial deformation, dil
tion, or simple shear can be derived in a similar way. Howev
the most commonly available experimental data correspond
simple compression or tension. Throughout this section it is
sumed that the body is homogeneous~i.e., r 5r (X)5constant!. In
view of ~1! and ~4!, the Cauchy stress tensor is given by

s5
1

J (
i 51

N

$2mia iV
a i1nib i@~ tr CofVb i !I2CofVb i#

22~mia i1nib i !J
2g iI %. (12)

Let l1 be the stretch in the axial direction. In the case of sim
compression or tension,l25l35l andR5I . A functional rela-
tion betweenl and l1 can be established by requiring that th
principal Cauchy stresses in directions perpendicular to the a
direction must vanish, i.e., in view of~12!,

(
i 51

N

@2mia il
a i1nib il

b i~l1
b i1lb i !22~mia i1nib i !~l1l2!2g i#

50. (13)

The first Piola-Kirchhoff stress in the axial direction is

S15(
i 51

N
2

l1
@mia il1

a i1nib il1
b ilb i2~mia i1nib i !~l1l2!2g i#,

(14)

which is formally a function ofl1 only since, in view of~13!, the
lateral stretchl can be interpreted as an implicit function ofl1 .
The above expression corresponds to the stress-stretch rel
that should be used when comparing the present model with
perimental data obtained from uniaxial compression tests~i.e.,
nominal stress versus axial stretch! under the assumption that th
test corresponds to ahomogeneousdeformation. In general, Eq
~13! cannot be solved in closed form forl as a function ofl1 .
However, for the special caseni50 andg i5a id, one can show
that l5l25l35l1

2n , hence J5l1
122n , where n5d/~112d!.

Observe that

n52
log l

log l1
, ~ni50!, (15)

which provides an interpretation ofn as a generalized Poisson
ratio for large deformations. The limit cased→0 ~i.e., n→0! cor-
responds to an axial deformation with negligible lateral deform
tion. The principal value of the first Piola-Kirchhoff stress tens
in the axial direction is, whenni50,

S15(
i 51

N
2mia i

l1
@l1

a i2l1
2a in#, ~ni50!. (16)

From ~15!, it follows that the special potentialŴ0 ~i.e., a gener-
alization of Blatz-Ko’s potential! predicts alinear relation be-
Transactions of the ASME
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for
tween logl and logl1 for uniaxial deformation. This could be
reasonable assumption incompressionsince experimental result
for elastomeric foams reported by Maiti et al.@2# show thatl;1,
hencen;0. However, experimental measurements for polyu
thane foams intensionconducted by El-Ratal and Mallick@11#
reveal that logl and logl1 do not depend linearly and that th
lateral stretch deviates considerably from 1. This point is analy
quantitatively in Section 6.

6 Applicability of the Model
In order to investigate the applicability of the present mod

one has to determine numerically the material functionsâ i , b̂ i ,
and ĝ i based on experimental data. This can be achieved u
applying a modified version of the method used by Twizell a
Ogden@12# ~essentially a least-squares error minimization us
the so-called Levenberg-Marquardt algorithm!. Ideally, one
should consider data from independent modes of deformation
then minimize the difference between experimental and theo
cal values simultaneously. However, the experimental data a
able for this work are limited to uniaxial compression~and ten-
sion! only.

In order to determine thefunctionsâ i(r ), b̂ i(r ) and ĝ i(r ) one
can proceed as follows: experimental values for homogene
compression are usually points of the form (l1 ,S1) wherel1 is
the axial stretch andS1 is the first Piola-Kirchhoff stress in the
axial direction. Ideally, the value of the lateral stretchl is also
reported but this is sometimes not the case. Assuming the la
the first step is to consider experimental data sets$(l1

(k, j ) ,S1
(k, j ))%

from a representative numberD of relative densities~i.e.,
r 1 , . . . ,r D!, where 1,k<M j , 1, j <D andM j is the number of
experimental points for each relative mass densityr j . Then, for
each subset of experimental points corresponding to afixed rj , the
corresponding values ofa i

( j ) , b i
( j ) , andg i

( j ) (1< i<N) that mini-
mize the error for each data subset are determined using
method described by Twizell and Ogden. Subsequently, fu
tional forms forâ i(r ), b̂ i(r ) andĝ i(r ) are assumed~e.g., a poly-
nomial or a power law! and a second least-squares minimization
carried out for the points (r j ,a i

( j )), etc. At the end of this proces
the model is fully determined in terms of its dependence onr. For
simple homogeneous compression, in view of~13!, in general
there is no closed-form expression for the lateral stretchl in terms
of l1 ~except, e.g., for the special case of Section 3!. Hence, for
the general case, the following preliminary steps need to be im
mented before applying the method used by Twizell and Og
~the indexi ranges in@1,N#, the superscriptj is dropped since the
following applies for givenr j !:

~a! Prescribe the Kelvin moduliK̂153k̂0 and K̂252m̂0 as
functions ofr ~or, equivalentlyÊ0(r ) and n̂0(r )! consistent with
experimental data for small deformations. For example, use
functions~10!.

~b! Obtain the functionsm̂i and n̂i ~use~11! for N51!.
~c! From the equilibrium Eq.~13! compute~symbolically! the

following derivatives:]l/]a i , ]l/]b i , ]l/]g i . These deriva-
tives are given as functions ofa i , b i , g i , l1 , l and its func-
tional form is relatively complex but can be easily obtained with
symbolic manipulator.

~d! Following Twizell and Ogden@12#, define E(k)5S̄1
(k)

2S1
(k) , whereS̄1

(k) is the experimental value of the nominal stre
andS1

(k) is the stress given by~14! as a function ofa i , b i , g i , l1

andl ~there is oneE(k) per each experimental pointk!.
~e! Compute symbolically the matrix of derivativesPki

5$]E(k)/]a i , ]E(k)/]b i , ]E(k)/]g i% i 51
N using the expressions fo

]l/]a i , ]l/]b i , ]l/]g i .

For a fixed relative mass densityr j , the unknown vector isx
5$(a i ,b i ,g i)% i 51

N . Since it is assumed that the experimental d
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do not include the lateral stretchesl (k), they need to be compute
numerically for eachl1

(k) and eachx. The rest of the algorithm,
briefly reviewed below for the sake of completeness, is simila
the one described by Twizell and Ogden@12# except that in order
to updatex the new values ofl (k) and the corresponding gradien
Pki and errorsE(k) need to be recalculated every timex is modi-
fied.

1 Assume an initial valuex05$(a i
0,b i

0,g i
0)% i 51

N .
2 From ~13!, computel (k) for eachl1

(k) ~for 1,k<M j !.
3 From ~14!, computeS̄1

(k) to obtain the vector of errorsE
5$E(k)%k51

M j and thus the matrix of gradientsP using the
expressions derived in steps~d! and ~e! above.

4 Updatex from iterationq to q11 as follows:

xq115xq2@Pq
TPq1gqI #21Pq

TEq ,

where I is the identity matrix~of suitable size depending on th
number of data and unknowns! and the scalar parametergq is
essential to avoid singularities in the algorithm~see Twizell and
Ogden @12# for a detailed description of it!. Steps 2 to 4 are
repeated until the method converges.

On applying the above algorithm withN51 to the experimen-
tal data reported by Maiti et al.@2# ~see also Gibson and Ashb
@3#!, one can determine the parametersa, b, andg for five relative
mass densities of polyethylene~in the ranger P@0.0245,0.3#! and
three densities of polyurethane (r P@0.012,0.043#). Subsequently,
the functionsâ, b̂, and ĝ can be obtained from a simple curv
fitting. A parabolic function was chosen for polyethylene and
linear relation for polyurethane due to the limited number of re
tive mass densities. It is noted that polyethylene foams typic
haveclosed cellsand a nonelastic behavior upon unloading. Ho
ever, Maiti et al.@2# propose a similar constitutive model for poly
ethylene foams than for polyurethane foams in compression~the
present work makes a similar assumption, though clearly
model would not be valid if the material has a hysteretic beh
ior!. Nonetheless, the effectiveness of the numerical procedure
results in compression is best illustrated with data for polyeth
ene foams since they cover a wider range of relative mass de
ties.

The nominal stress versus axial stretch curves obtainedafter
correlating the functionsâ, b̂, andĝ are shown in Figs. 1~poly-
ethylene,Es50.7 GPa! and 2~polyuretane,Es50.045 GPa!. Fig-
ure 3 corresponds to the functionsâ, b̂, and ĝ. It is noted that
these functions are in the admissible range defined in Sectio
~recall that the Gibson-Ashby model assumes thatK̄5K1 /K2
54!. It is worth noting that these curves should not be used
extrapolation, but rather for interpolation~as a function ofr!.

Fig. 1 Nominal axial stress versus axial stretch for simple
compression „polyethylene …. The experimental data are taken
from Maiti et al. †2‡; the solid lines correspond to the theoreti-
cal model. The dashed lines are obtained by interpolation.
JUNE 2000, Vol. 67 Õ 251
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There is a relatively good agreement with the experimental d
using a one-term stored energy (N51). More accurate curve fit-
tings can be obtained by using more than one term. Observe
the functionsa, b, and g for polyethylene shown in Fig. 3 are
nonmonotonic. However, this does not result in a nonuniq
model as illustrated by the two interpolated stress-stretch cu
for r 50.2 andr 50.25 shown in Fig. 1~dashed lines!. It is also
important to notice that these curves are likely to be differen
more data are used for curve fittings~i.e., additional relative den-
sities for compression or other types of deformation!.

Fig. 2 Nominal axial stress versus axial stretch for simple
compression „polyurethane …. The experimental data are taken
from Maiti et al. †2‡; the solid lines correspond to the theoreti-
cal model.
252 Õ Vol. 67, JUNE 2000
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To further investigate the applicability of the model, expe
mental results reported by El-Ratal and Mallick@11# were ana-
lyzed. Their results consist of uniaxialtensiontests for two dif-
ferent open-cell polyurethane foams with densitiesr1

50.017 kg•m23 and r250.035 kg•m23. The experimental data
include both axial and lateral stretches. As opposed to the pr
ous case~compression!, a different approach is used here sin
there is no information about the foam’s behavior in the linea
elastic range~i.e., Young’s modulusEs is not reported for the
specific foam samples except for values derived from the num
cal analysis of the nonlinear behavior!. In this case, the parameter
m andn are not specified using~11! but computed from the non
linear data in a similar way as fora, b, andg. Also, the deriva-
tives ]l/]a i , etc., are not required since the experimental valu
of the lateral stretchl are known. However, in addition to th
errors E5S̄12S1 for axial stress, the errorsE5S̄2S52S for
~zero! lateral stresses—i.e., Eq.~13!—need to be included in the
minimization procedure to guarantee a good agreement betw
theoretical and experimental values. Using both~13! and~14!, the
parametersm, n, a, b, andg are determined—independently fo
r1 andr2—in order to minimize the sum of the errorsE. One can
obtain a very good correlation with only one term (N51); how-
ever, the resulting powerg turns out to be negative, hence th
predicted behavior in compression is unrealistic. To overcome
difficulty, the approach taken here is as follows: Several exp
mental points fromcompressiontests for the same material~poly-
urethane! were taken from the previous data set~Maiti et al.
@2#!—interpolated to the same relative densities as in El-Ratal
Mallick @11# tension tests usingrs51200 kg•m23. Then, this
Fig. 3 Parameters a, b, and g for polyethylene „PE… and polyurethane „PU… as functions of the relative mass density r
Transactions of the ASME
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‘‘additional’’ data were used in conjunction with the tension tes
data in order to obtain the values ofm, n, a, b, andg ~with g.0!.
The corresponding stress-stretch curves and the relation bet
the axial and lateral stretches (l1 ,l) are shown in Fig. 4 and
show a good agreement between theoretical and experimenta
ues.

Since there are only two different densities, no correlation w
r is proposed in this case. However, this example highlights
interesting point: As shown in Fig. 4, the relation between
logarithmic measures of the axial and lateral stretches in tensio
not linear as predicted by Blatz-Ko’s potential~or its generaliza-
tion shown in Section 3!. The potential~5! provides a better cor-
relation~solid lines in Fig. 4~bottom!!. Furthermore, even thoug
there are no experimental values for the lateral stretchl reported
in Maiti et al. @2# the behavior predicted in compression, as sho
in Fig. 4, seems reasonable. Observe thatl is a monotonically
decreasing function ofl1 with values close to 1 whenl1P(0,1#
~except forl1!1!, which means that the material expands lat
ally by a small amount when it is compressed froml151. Al-
though not shown in Figs. 1 and 2, the~computed! lateral
stretches follow the same trend.

7 Optimization Problem
As an application of the model developed in the previous s

tions, consider an optimal design problem, namely the determ
tion of the relative mass density of a foam that provides the m
mum stored energy under a given loading condition. Suppose
a homogeneousprismatic body made out of foam is subject

Fig. 4 Top: Nominal axial stress versus axial stretch from
uniaxial tension tests of polyurethane „El-Ratal and Mallick
†11‡…. The compression data „l1Ë1… were taken from Maiti
et al. †2‡. The solid lines correspond to the theoretical model.
Bottom: Logarithmic measures of lateral versus axial stretch
for uniaxial tension tests „El-Ratal and Mallick †11‡…. Observe
the nonlinearity between log l1 and log l.
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homogeneousuniaxial compression. LetŜ1 be the given first
Piola-Kirchhoff stress in the axial direction and suppose that t
objective is to maximize the stored energy viewed as a function
the relative mass densityr, subject to axial and lateral equilibrium.
The optimization problem can be expressed as:find ropt
P@r m ,r M# that maximizes W subject to~13! and ~14! with S1

5Ŝ1 , where

W̄52m̂~r !~l1
â~r !12lâ~r !23!1n̂~r !@2~l1l!b̂~r !1l2b̂~r !23#

1 p̂~r !@~l1l2!2ĝ~r !21#.

As an example, this problem is solved numerically for polyethy
ene withr m50.0245 andr M50.3. The proposed method to solve
this problem is actually similar to the algorithm used in Section
From the constraints~13! and~14! one can interpret the axial and
lateral stretches as being implicit functions ofr ~i.e., for givenŜ1 ,
it is possible to solve~13! and~14! as a function ofr, though not
in closed form!. However, it is straightforward to compute sym
bolically the derivativesdl/dr anddl1 /dr as functions ofl, l1

and r. Thus, the derivative ofW̄ with respect tor—taking into
account the equilibrium contraints~13! and~14!—can be obtained
as a function ofl, l1 andr. A modified version of the algorithm
described by Twizell and Ogden@12# can be once again imple-
mented withr as the unknown.

The optimal densities and the corresponding maximum value
the stored energy per unit reference volume are shown in Fig

Fig. 5 Top: Optimal polyethylene foam density r opt „for maxi-
mum stored energy … as a function of the prescribed load Ŝ1 in
uniaxial homogeneous compression. As an example, the inset
shows the stored energy as a function of r for Ŝ1ÄÀ3 MPa.
Bottom: Maximum stored energy Wopt per unit reference „un-
derformed … volume of polyethylene „for the optimal relative
mass density … as a function of the prescribed compressive load
Ŝ1 .
JUNE 2000, Vol. 67 Õ 253
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for different compressive loads. Clearly, there is a substantial
ference between the stored energy for different relative mass
sities.

8 Concluding Remarks
As shown in Section 6, the behavior of isotropic elastome

foams made out of a given material can be described in param
form for different relative mass densities using a single functio
relation. In principle, the same procedure can be applied for o
foam-like elastic materials. It is important to point out that t
potential proposed here can only capture the behavior in comp
sion in some average sense since typically strain localization
curs in experiments, hence the deformation might not be homo
neous as assumed in Section 6. In principle, this means tha
potential, even though it is assumed to represent the foam’s
havior locally in compression, might in fact not be able to d
scribe the real deformation in detail. The reader is referred to
work of Lakes et al.@13# and Abeyaratne and Triantafyllidis@14#
for analyses of microbuckling in compression.

Although the optimization problem described in Section 7
relevant per se, more interesting problems can be considered.
cifically, one can analyze optimization problems where the de
mation is nonhomogeneous. Also, in connection with recent m
ods developed in topology optimization for linearly elas
structures~see Bendso”e et al.@15#!, one could generalize the non
linear problem and allowr to be a function of position~i.e., one
could consider nonhomogeneous bodies!. However, it is important
to have a well-posed formulation of the corresponding des
problem since it is likely that the solution, if it exists, wouldnot
correspond to anisotropic foam. Consequently, it seems approp
ate to extend the present formulation to anisotropic foams in o
to identify the closure of the design problem.
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Electrode-Ceramic Interfacial
Cracks in Piezoelectric Multilayer
Materials
A thin electrode layer embedded at the interface of two piezoelectric materials repre
a common feature of many electroceramic multilayer devices. The analysis of inte
cracks between the embedded electrode layer and piezoelectric ceramic leads to
standard mixed boundary value problem which likely prevents a general analytical
tion. The present work shows that the associated mixed boundary value problem
indeed admit an exact elementary solution for a special case of major practical intere
which the two piezoelectric half-planes are poled in opposite directions perpendicul
the electrode layer. In this case, it is found that oscillatory singularity disappears, in s
of the unsymmetric characters of the problem, and electroelastic fields exhibit p
singularities. Particular emphasis is placed on the near-tip singular stresses along
bonded interface. The results show that tensile stress exhibits the square root singu
along the interface whereas shear stress exhibits the dominant-order nonsquare
singularity. In addition, the present model indicates that a pure electric-field load
could induce the dominant-order singular shear stress directly ahead of the inte
crack tip. @S0021-8936~00!00602-4#
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1 Introduction
Ferroelectric/piezoelectric ceramics have widely been use

design of various modern electromechanical multilayer devic
such as transducers, capacitors, sensors, and actuators@1–6#. It
has been observed that interfacial cracking between embe
thin electrode layers and ceramic matrix is a common caus
failure in many electroceramic multilayer devices~see@5,7–9#!.
On the other hand, existing theoretical works on interfacial cra
in piezoelectric materials~see, e.g.,@10–11#! have been limited to
interface cracks between two bonded piezoelectric half-plane
the absence of an intermediate electrode layer, which lead to
ventional generalized displacement or traction boundary co
tions and can be solved by the standard techniques of analy
continuation established for interface cracks in anisotropic me
~see@12#!. Evidently, these existing solutions are not applicable
electrode-ceramic interfacial cracks in electroceramic multila
systems because the presence of a thin electrode layer cha
electrical interface conditions while it does not affect mechan
interface conditions. Recently, electroelastic field around disc
tinuous electrode layers embedded between two piezoele
half-planes has been studied~@13#! in the absence of any interfac
crack. To our knowledge, however, no effort has been mad
analyze electrode-ceramic interfacial cracks for piezoelectric
materials bonded through a thin electrode layer, despite its o
ous relevance to reliability mechanics of electroceramic multil
ered devices.

The present work is devoted to plane-strain analysis
electrode-ceramic interface cracks in piezoelectric multilayer m
terials. According to common practice of multilayered electro
ramic devices, the thickness of thin electrode layer is neglig
and the ceramic materials on two sides of the electrode layer
assumed to be semi-infinite. As shown later, this leads to a n
trivial mixed boundary value problem which likely does not adm

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, A
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a general closed-form solution. Inspirited by the role of embed
electrode layers in multilayered electromechanical devices, t
we consider a special case of major practical interest in which
upper and lower piezoelectric half-planes are poled in oppo
directions perpendicular to the electrode layer~see Fig. 1!. Our
major finding is that the mixed boundary value problem can
solved explicitly for this practically significant case. In Sections
and 4, the exact solutions are given for a single interface cr
situated on one side of the electrode layer~Fig. 1~a!!, and for a
pair of interface cracks situated symmetrically on the oppo
sides of the electrode layer~Fig. 1~b!!, respectively. In both cases
the crack-tip fields exhibit power singularitiesr (r i21/2)

( i 51,2,3), where (21/2),r1,r250,r35(2r1), and the os-
cillatory singularity disappears. In particular, the present lin
piezoelectric model predicts that a pure electric-field load
could produce the dominant-order singular shear stress dire
ahead of the electrode-ceramic interface crack tip. This give
possible explanation for electrically induced interfacial debond
observed in many piezoelectric multilayer devices.

2 Formulation of a Linear Piezoelectric
The basic equations for a linear piezoelectric are

s i j , j50, Di ,i50

g i j 5
1

2
@ui , j1uj ,i #, Ei52w i , (1)

s i j 5Ci jkl gkl2eki jEk , Dk5eki jg i j 1«klEl

whereui and w denote the displacement and electrical potent
s i j , g i j , Ei , and Di are the stress, strain, electrical field, an
electrical displacement, andCi jkl , ei jk , and « i j are the elastic,
piezoelectric, and dielectric constants, respectively. In tw
dimensional case~see@14,15,11,16#! let us consider the solution
of the form

u~x,y![S u1~x,y!

u2~x,y!

u3~x,y!

w~x,y!

D 5a f~x1py! (2)

-
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Fig. 1 The electrode-ceramic interface cracks lying between an electrode layer
and ceramic matrix in a piezoelectric multilayer material; „a… a single interface
crack, „b… two parallel interface cracks
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where f (* ) is an analytic function,p a complex number, anda a
constant four-element column. All equations of~1! are satisfied by
~2! for arbitrary f (* ) if

@Q1p~R1RT!1p2T#a50 (3)

where the matrixR and the symmetric matricesQ andT are de-
fined by the material constants~for details, see@16#!. For exis-
tence of a nonzero vectora, p has to satisfy an eigenequation. F
a stable material, eight eigenroots form four conjugate pairs w
nonzero imaginary parts. Assume thatpa are four distinct roots
with positive imaginary parts andaa(a51,2,3,4) are the associ
ated eigenvectors, the general solution of~1! can be given in the
form

u~x,y!5(
a51

4

@aa f a~za!1aa f a~za!#5A f~z!1A f~z!,

f ~z!5~ f 1~z1! f 2~z2!, f 3~z3!, f 4~z4!!T, (4)

za5x1pay, a51,2,3,4

and the associated stresses and electrical displacements are
by

~s2i ,D2!5(
a51

4

@ba f a8 ~za!1b̄a f a8 ~za!#5B f8~z!1B f8~z!,

(5)

~s1i ,D1!52(
a51

4

@bapa f a8 ~za!1b̄ap̄a f a8 ~za!#, i 51,2,3

wheref a(* ) are four arbitrary analytic functions, the column ve
tors ba(a51,2,3,4) is determined by the corresponding p
(pa ,aa) through

ba5~RT1paT!aa5
21

pa
~Q1paR!aa , a51,2,3,4 (6)

and the constant matricesA, B, andY are defined by

A5~a1 ,a2 ,a2 ,a4!, B5~b1 ,b2 ,b3 ,b4!, Y[ iAB21. (7)

3 An Electrode-Ceramic Interface Crack
Consider two piezoelectric half-planes bonded through a

electrode layer. In view of the role of embedded electrode lay
in electroceramic multilayer devices, a special case in which
two piezoelectric half-spaces are poled in opposite directions
pendicular to the electrode layer is of particular interest. In t
case, plane deformation is decoupled from antiplane shear~see the
Appendix!. Here, we first consider a single electrode-ceramic
terface crack, of length 2a, situated on one side of the electrod
layer, as shown in Fig. 1~a!. The corresponding boundary valu
problem in plane strain is of the form
2000
r
ith

given

-
ir

hin
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er-
is

in-
e
e

s2i
15s2i

25s2i* , D2
15D2* ,E1

250, zPL

s2i
12s2i

250, ui
12ui

250, E1
15E1

250, y50, uxu.a
(8)

s i j →0, Di→0, uzu2`, i , j 51,2

whereL5@2a,a#, the superscripts ‘‘1’’ and ‘‘ 2’’ indicate the
limit values from the upper and lower half-planes, respective
ands21* , s22* , andD2* are the loadings parameters prescribed
the interface crackL.

3.1 Reduction to a Hilbert Problem. We first reduce the
problem~8! to a standard Hilbert problem. According to the sta
dard techniques of analytical continuation developed for interf
cracks in anisotropic media~see@12#!, on using~5!, ~7! the con-
tinuities of traction along the whole real axis can be written a

@BI f I8~x!2B̄II f̄ II8~x!#12@BII f II8~x!2B̄I f̄ I8~x!#25~0,0,DD2~x!!T

(9)

where the subscript I or II denotes the quantities associated
the upper or lower half-planes, andDD25(D2

12D2
2) denotes the

unknown discontinuity ofD2 across the interface, which ap
proaches zero at infinity. It then follows from~9! that

BI f I8~z!2B̄II f̄ II8~z!5C~z!, y.0
(10)

BII f II8~z!2B̄I f̄ I8~z!5C~z!, y,0

whereC(z) is defined by

C~z![
1

2p i E2`

1` ~0,0,DD2~ t !!T

t2z
dt (11)

which approaches zero as quickly as 1/z2 at infinity. On the other
hand, the continuities of displacement and tangential electr
field along the bonded interface give

@YIBI f I8~x!1ȲIIBII f II8~x!#12@ȲIBI f I8~x!1YIIBII f II8~x!#250,

(12)

y50, uxu.a

then it follows that
Transactions of the ASME
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@YIBI f I8~z!1YII BII f II8~z!#5G~z!, y.0
(13)

@YI BI f I8~z!1YIIBII f II8~z!#5G~z!, y,0

where G(z) is an unknown function which is analytical in th
entire plane exceptL and approaches zero at infinity as quickly
1/z2. Finally, the conditionE150 along the lower real axis give

2YIIFBII f II8~x!2
1

2
C~x!G2

22YII FBI f I8~x!2
1

2
C~x!G1

1YIIC~z1!1YIIC~z2!5~* ,* ,0!T, y50 (14)

where ‘‘* ’’ denotes some arbitrary quantities, and the bound
condition on the upper crack face gives

FBI f I8~x!2
1

2
C~z!G1

1FBII f II8~x!2
1

2
C~z!G2

5S s21*

s22*

D2*
D 2

1

2
~0,0,DD2~x!!T, (15)

y50, uxu,a.

Note that~10! and ~13! give

~YI1YII !FBI f I8~z!2
1

2
C~z!G5

1

2
~YII2YI!C~z!1G~z!, y.0

~YII1YI!FBII f II8~z!2
1

2
C~z!G5

1

2
~YI2YII !C~z!1G~z!, y,0.

(16)

Hence, substitution of~16! into ~14! and ~15! yields a nontrivial
mixed boundary value problem for the two unknown function
DD2(x), defined on the whole real axis, and the vector funct
G(z), analytical in the entire plane exceptL. Unfortunately, a
general closed-form solution seems unavailable for this mi
boundary value problem.

The major finding of this work is that the above problem do
indeed admit an exact elementary solution when the two pie
electric half-planes are poled in opposite directions perpendic
to the intermediate electrode layer. To demonstrate this, from
on, we shall use the assumption that the upper and lower pi
electric half-planes are poled in opposite directions parallel to
y-axis. Under this condition, the condition~14! becomes

S @YII#332
Y23

2

Y22
D ~C1~z!1C2~z!!

5@G1~z!2G2~z!#31
@YII#23

Y22
@G1~z!2G2~z!#2 , y50

(17)

here C(z) denotes its third component, the subscripts 2 an
denotes the components ofG(z), and the subscript I or II is omit-
ted when the associated quantity has the same value in the
half-planes~see Appendix!. Hence, along the bonded interfac
across whichG(z) is continuous,~17! gives

C~x1!1C~x2!50, y50, uxu.a. (18)

Let us define
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s

ry

s,
on

ed

es
zo-
lar
ow
zo-

the

3

two
e

C~z!5
C0~z!

Aa22z2
, G~z!5

G0~z!

Az22a2
(19)

where all multivalued functions in~19! are defined by the single
valued branch cut along the negative real-axis~thenA(a22z2) is
an analytic function with the branch cuts@2`,2a# and @a,`#,
while A(z22a2) is an analytic function with the branch cu
@2a,a#), and G0(z) is analytic in the entire plane exceptL. It
follows from ~18! thatC0(z) is analytic in the entire plane excep
L. Thus, the problem can now be reduced to a boundary va
problem onL.

In fact, in terms ofC0(z) andG0(z), the condition~17! on L
has a tractable form

i S @YII#332
Y23

2

Y22
D ~C0

1~z!1C0
2~z!!

5@G0
1~z!1G0

2~z!#31
@YII#23

Y22
@G0

1~z!1G0
2~z!#2 , xPL.

(20)

BecauseC0(z) and G0(z) approach zero at infinity and canno
exhibit square-root singularity at the crack tip, it follows fro
~20! that

i S @YII#332
Y23

2

Y22
DC0~z!5@G0~z!#31

@YII#23

Y22
@G0~z!#2 (21)

in the wholez-plane. Now, the expression~16! has the form

BI f I8~z!2
1

2
C~z!5S 0

2
@YI#23

2Y22

0

D C0~z!

Aa22z2

1~YI1YII !
21

G0~z!

Az22a2
, y.0

BII f II8~z!2
1

2
C~z!5S 0

@YI#23

2Y22

0

D C0~z!

Aa22z2

1~YII1YI!
21

G0~z!

Az22a2
, y,0. (22)

Substituting~21! and ~22! into the remaining boundary conditio
~15!, we obtain a standard Hilbert condition forG0(z) on L

MG0
12M̄G0

25 i S s12*

s22*
D*

D Aux22a2u, xPL (23)

whereM is a constant Hermitian matrix defined by
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M5
1

2 1
Y33

~Y11Y332Y13
2 !

0
i @YII#13

~Y11Y332Y13
2 !

0

1

Y22
1

Y23
2

Y22
2 S Y332

Y23
2

Y22
D

@YII#23

Y22S Y332
Y23

2

Y22
D

2 i @YII#13

~Y11Y332Y13
2 !

@YII#23

Y22S Y332
Y23

2

Y22
D

Y11

~Y11Y332Y13
2 !

1
1

S Y332
Y23

2

Y22
D 2 (24)
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andYi j ( i , j 51,2,3) are all real numbers associated with a pie
electric poled in the positivey-direction, as defined by (A1) and
(A2) ~see Appendix!.

3.2 General Solution. The solution of~23! can be obtained
using the standard method. Substituting

G0~z!5zrg

into the homogeneous equation of~23!, we obtain the eigenvalue
problem

@Re~M !#21i Im@M #g2lg50, l5
12e2irp

11e2irp (25)

where the branch cut is made from the crack tip along the nega
real axis, andg is a nonzero constant vector. It turns out that thr
distinct eigenrootsl1 ( i 51,2,3) are

l250, l1,356 iAU M22M13
2

M11~M22M332M23
2 !
U (26)

which correspond to three distinctreal singularity indexes

r1,r250,r352r1 , i sin@2rkp#5
22lk

12lk
2 ,

(27)

urku,
1

2
, k51,2,3

whereMi j denote the elements of the matrixM defined by~24!.
Obviously, the singularity indexes remain unchanged when
poling directions of the two piezoelectric half-spaces reverse
multaneously. In particular, because all singularity indexes
real, there is no oscillatory singularity. Here, it should be stres
that, due to the electrode layer between two symmetric piezoe
tric half-planes, the present interface crack problem is not s
metric about the interface. Hence, the nonexistence of oscilla
singularity at the electrode-ceramic interface crack is not s
evident.

Three linearly independent eigenvectors corresponding to t
distinct eigenroots can be given by

g15S 1

2l1M11M23

M13M22

l1M11

M13

D , g25S 0
1
0
D , g35S 1

l1M11M23

M13M22

2l1M11

M13

D .

(28)

Thus, the general solution ofG0(z) can be sought in the form~see
@17#!

G0~z!5(
i 51

3

f i~z!gi (29)
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where f i(z) ( i 51,2,3) are three unknown functions which a
analytic in the entire plane exceptL and approach zero at infinity
Substituting~29! into ~23! yields

f k~x!12e2irkp f k~x!25
idk

11lk
Au~x22a2!u, xPL, k51,2,3

(30)

where the constantsdi ( i 51,2,3) are determined by

@Re~M !#21S s12*

s22*

D2*
D 5(

i 51

3

digi (31)

with the results

d15
s12*

2M11
1

M13~D2* M222M23s22* !

2l1M11~M22M332M23
2 !

, d25
s22*

M22
,

(32)

d35
s12*

2M11
2

M13~D2* M222M23s22* !

2l1M11~M22M332M23
2 !

.

Since f i(z) ( i 51,2,3) cannot exhibit singularity of order highe
than ~21/2! at the crack tip, the condition~30! gives

f k~z!5
dk

2 FAz22a22~z12ark!S z2a

z1aD rkG , k51,2,3.

(33)

Hence, onceG0(z) is obtained from~29!, C0(z) andB f8(z) can
be found from~21! and~22!, and then electroelastic fields can b
calculated by substitutingz in the Stroh’s functionsf 8(z) by the
respective variablesza (a51,2,3).

4 Two Parallel Interface Cracks
Although a single interfacial crack examined in Section 3 is

basic importance, a pair of parallel cracks caused by symme
debonding of the electrode layer from ceramic matrix, as show
Fig. 1~b!, is also of practical interest. In this case, the bound
value problem is of the form

s2i
15s2i

25s2i* , D2
15D2* , D2

252D2* , zPL

s2i
12s2i

250, ui
12ui

250, E1
15E1

250, y50, uxu.a

s i j →0, Di→0, uzu→`, i , j 51,2. (34)

It is not difficult to verify that all formulas given in Section 3 u
to ~18! remain true provided that~i! DD2(x) appearing in~11! is
known on the segmentL5@2a,a# as

DD2~ t !5C~z!12C~z!252D2* , y50, uxu,a (35)

and ~ii ! the condition~14! holds only on the bonded part of th
interface and then reduces to the form~18!. Consequently, from
~18! and ~35!, it is found that
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C~z!5
2 iD 2*

Aa22z2
@Az22a22z#. (36)

Thus, the remaining boundary condition~15! leads to a standard
Hilbert condition for the unknown functionG(z) on L as follows:

NG~x!11N̄G~x!25S s12*

s22* 1
@YI#23

Y22
D2*

0

D , xPL,

(37)

N[~YI1YII !
21.

Similar to Section 3.2, the general solution of~37! is of the form

G~z!5(
i 51

3

qi~z!hi (38)

wherehi andqi(z) ( i 51,2,3) are given by

h15S 1

0

2 il1Y33

@YII#13

D , h25S 0
1
0
D , h35S 1

0

il1Y33

@YII#13

D
(39)

qi~z!5
bi

2 F12
~z12ar i !

Az22a2 S z2a

z1aD r iG , i 51,2,3

andbi ( i 51,2,3) are three constants determined by

b15b35s12*
Y11Y332Y13

2

Y33
, b252Y22S s22* 1

@YI#23

Y22
D2* D

(40)

and three distinct singularity indexes are given by

e2irkkp5
12lk

11lk
, k51,2,3, l250, l1,356 iAU @YII#13

2

Y11Y33
U.

(41)

Note that

UM332
M23

2

M22
U.uM33u, U M13

2

M11M33
U,U Y13

2

Y11Y33
U.

It is seen that the absolute value of the singularity indexr1 given
by ~41! is bigger than that obtained from~27! for a single interface
crack. On the other hand, similar to a single interface crack
Section 3, all singularity indexes in~41! are real and then there i
no oscillatory singularity.

5 Singular Stresses Along the Bonded Interface
The complete solutions obtained in Sections 3 and 4 are use

study the near-tip singular field, with an emphasis on the sing
stresses ahead of the interface crack tip.

5.1 A Single Interface Crack. From ~19!, ~21!, ~22!, the
upper limit of Stroh’s function ahead of the crack tipx5a is

BI f I8~x1!5
1

Aux22a2u
MG0~x!, x.a. (42)

Thus, the singular parts of the tensile and shear stresses ahe
the crack tipx5a are

s225
2s22* ~2a!1/2

2Aux2au
, (43)
Journal of Applied Mechanics
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s125
2s12* ~2a!1/2

4Aux2au
F ~112r1!S ux2au

2a D r1

1~122r1!S 2a

ux2au D
r1G

1
2l1M11~M22D2* 2M23s22* !~2a!1/2

4M13M22Aux2au

3F ~122r1!S 2a

ux2au D
r1

2~112r1!S ux2au
2a D r1G , (44)

and the upper limit of the normal electrical displacement forx
.a is

D2~x1!5
2s22* M23~2a!1/2

2M22Aux2au
2

s12* M13~2a!1/2

4l1M11Aux2au

3F ~122r1!S 2a

ux2au D
r1

2~112r1!S ux2au
2a D r1G

2
~M22D2* 2M23s22* !~2a!1/2

4M22Aux2au

3F ~122r1!S 2a

ux2au D
r1

1~112r1!S ux2au
2a D r1G .

(45)

Further, on using~11!, ~19!, ~21!, it can be verified that the lowe
limit of the normal electrical displacement forx.a is

D2~x2!5

s12* l1S M332
Y22

Y22Y332Y23
2 D ~2a!1/2

4M13Aux2au

3F ~122r1!S 2a

ux2au D
r1

2~112r1!S ux2au
2a D r1G

2
~M22D2* 2M23s22* !~2a!1/2

4Aux2au

S M332
Y22

Y22Y332Y23
2 D

~M22M332M23
2 !

3F ~122r1!S 2a

ux2au D
r1

1~112r1!S ux2au
2a D r1G .

(46)

It is seen from~43!, ~44! that~i! the tensile stress exhibits a squa
root singularity and the corresponding stress intensity facto
determined by the remote tensile stress. In particular, this imp
that a pure electric-field loading does not induce any singu
tensile stress ahead of the electrode-ceramic interface crack
~ii ! the shear stress exhibits the dominant-order nonsquare
singularity. In addition, boths22* and D2* could give rise to a
dominant-order singular shear stress at the bonded interf
These results suggest that the interface shear stress could p
significant role in debonding of the electrode layers from ceram
matrix in piezoelectric multilayer materials.

5.2 Two Parallel Interface Cracks. If a pair of parallel
electrode-ceramic cracks~as shown in Fig. 1~b!! are considered, it
follows from ~19!, ~21!, ~22! that

BI f I8~x1!5S 0

@YI#23

Y22

21

D D2*

4

~2a!1/2

Aux2au
1NG~x!, x.a.

(47)

Thus, the singular stresses directly ahead of the crack tipx5a are
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s22~x!5
2s22* ~2a!1/2

2ux2au1/2 , x.a (48)

s12~x!52s12*
~2a!1/2

4ux2au1/2 F ~112r1!S ux2au
2a D r1

1~122r1!S 2a

ux2au D
r1G , x.a (49)

and the upper normal electrical displacement~the lower one can
be obtained immediately from the symmetry of the present ca!
is given by

D2~x1!5
2D2* ~2a!1/2

2Aux2au
1s12*

il1YII ~2a!1/2

4@YII#13ux2au1/2

3F ~112r1!S ux2au
2a D r1

2~122r1!S 2a

ux2au D
r1G .

(50)

Similar to Section 5.1, the tensile stress given by~48! exhibits a
square root singularity while the shear stress given by~49! exhib-
its the dominant-order nonsquare root singularity. In the pres
case, however, the loading parameterss22* andD2* do not induce
any singular shear stress at the bonded interface.

5.3 Effects of an Electrical Field on Singular Shear Stress
Electroceramic multilayer devices are used usually under ele
cal or electrical/mechanical loading. Hence, it is of great inter
to study the effects of an electrical field on interfacial cra
growth in piezoelectric multilayer materials. As stated above, o
shear stress exhibits the dominant-order singularity ahead o
interface crack tip. Therefore, let us examine the effects of
electrical field on the dominant-order singular shear stress.

Electrically Induced Singular Shear Stress.First, we consider
a pure electrical loading. Because electrically induced interfa
cracking has been observed as one of main failure models in m
electroceramic multilayer systems~see@5,7,8,9#!, it is of particular
interest to examine whether or not the linear piezoelectric mo
predicts an electric-field induced singular stress ahead of
electrode-ceramic interface crack tip. Recently, Ru et al.@18#
have examined interfacial cracking in electrostrictive multilay
systems. Similar issue for piezoelectric multilayer materials
yet to be investigated.

Under a pure electrical loading, the tensile stresss22 does not
exhibit any singularity along the bonded interface, and the sh
stresss12 along the bonded interface is given by

s125
2 il1~112r1!Y33D2* ~2a!1/22r1

4@YII#13ux2au1/22r1
, r1,0. (51)

Evidently, the electrically induced singular shear stress~51!
changes sign when the direction of applied electrical field
verses. Hence, if the singular interface shear stress plays a d
nant role in electrically induced interfacial debonding, the pres
model appears to predict that the electrically induced interfa
debonding is not sensitive to reversal of the applied electr
field. This conclusion distinguishes the electrode-ceramic inte
cial debonding from crack growth in a homogeneous piezoelec
medium, for the latter some experiments~see@19–20#! and non-
linear theoretical models~see, e.g.,@21#! have showed that the
effect of an electric field on crack growth essentially depends
the direction of the applied electrical loading~although the linear
piezoelectric model does not predicts any electric-field indu
stress intensity factor!. To our knowledge, it seems that no cle
experimental result has been reported in the literature on the
of an electric-field in interfacial cracking in piezoelectric medi
260 Õ Vol. 67, JUNE 2000
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Effect of Electrical Field on Singular Shear Stress Induced b
Remote Tensile Stress.Next, we consider a combined electrica
mechanical loading. Of particular interest is the effect of an el
trical field on the singular shear stress induced by a remote ten
stress (2s22* ).0. In this case, the dominant-order singular she
stress is

s125
l1~112r1!M11~M22D2* 2M23s22* !~2a!~1/2!2r1

4M13M22ux2au~1/2!2r1
. (52)

Note that

M22.0, M23}2@YII#23}@YI#23.

It is concluded that electrical field enhances the dominant-or
singular shear stress caused by the remote tensile stress if

D2* @YI#23.0. (53)

On the other hand, electrical field reduces the dominant-order
gular shear stress caused by the remote tensile stress if

D2* @YI#23,0. (54)

It turns out from~52!–~54! that an electrical field enhances~or
reduces! the singular shear stress caused by a remote tensile s
if the electrical field is applied opposite to~or in the same direc-
tion as! the poling direction. This conclusion is contrary to th
known effect of an electric field on crack growth in a homog
neous piezoelectric medium under combined electric
mechanical loading~see@19–20#! where these authors conclude
that crack growth is enhanced~or impeded! by an electrical field
applied in the same direction as~or opposite to! the poling direc-
tion.

6 Conclusions
In view of practical importance of interfacial cracking observ

in many piezoelectric multilayer devices, the problem
electrode-ceramic interface cracks is studied in the paper. Ow
to the presence of an intermediate electrode layer, the analys
interface cracks between two piezoelectric materials is led t
nonstandard mixed boundary value problem which likely does
admit a general analytical solution. Our major finding is that t
mixed boundary value problem can be solved explicitly when
two piezoelectric half-planes are poled in opposite directions p
pendicular to the electrode layer. In these cases, there is no o
latory singularity in spite of the lack of a symmetry about t
interface when a single interface crack is considered. Furtherm
the tensile stress is found to exhibit a square-root singula
ahead of the interfacial crack tip, while the shear stress exhi
the dominant-order power singularity. In Section 5.3, the effec
an electrical field on interfacial debonding is discussed in term
the dominant-order singular shear stress. In particular, the pre
model predicts that a pure electric-field loading could induce
dominant-order singular shear stress ahead of the interface c
tip. This provides a possible explanation for electrically induc
interfacial debonding observed in many piezoelectric multila
devices.
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Appendix
If the poling direction of a piezoelectric is parallel to th

y-direction, plane deformation in thex-y plane is decoupled from
antiplane shearing. In this case, if the poling axis is along
positivey-axis, we have~see@11#!
Transactions of the ASME
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Re@Y#5S 1/CL 0 0

0 1/CT 1/e

0 1/e 21/«
D ,

CL.0, CT.0, e.0, «.0. (A1)

Further, according to some known numerical solutions~@22,23#! it
can be verified~@21,24#! that

Im@Y#5S 0, Y12, Y13

2Y12, 0 0

2Y13, 0, 0
D , Y12.0, Y13,0

(A2)

whereY12 andY13 are two real numbers. Hence, the matrixY ~see
~7!! for a piezoelectric poled in the positivey-direction is of the
form

Y15S Y11, iY12, iY13

2 iY12, Y22, Y23

2 iY13, Y23, Y33

D (A3)

where all other real numbers,Y11, Y22, Y23, and Y33, can be
obtained by comparing~A1! with ~A3!. Now, through a rotation of
the coordinate system, the matrixY for a piezoelectric poled in the
negativey-direction is found to have the form

Y25S Y11, iY12, 2 iY13

2 iY12, Y22, 2Y23

iY13, 2Y23, Y33

D (A4)

where the superscript ‘‘2’’ indicates the poling direction. Further
it follows that

@Y11Y2#215
1

2~Y11Y332Y13
2 !

3S Y33 0 iY13

0
~Y11Y332Y13

2 !

Y22
, 0

2 iY13 0 Y11

D .

(A5)

~Y11Y2!21~Y12Y2!5S 0 i
Y13Y232Y12Y33

Y33Y112Y13
2 0

i
Y12

Y22
0

Y23

Y22

0
Y11Y232Y12Y13

Y33Y112Y13
2 0

D .

(A6)
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Surface Waves in Coated
Anisotropic Medium Loaded
With Viscous Liquid
The development of micro-acoustic wave sensor in biosensing created the need for
investigations of the surface wave propagation in a viscous liquid loaded layered me
In this paper, we employed the sextic formalism of surface waves to study the vi
effect on the dispersion and attenuation characteristics of surface waves in a vis
liquid loaded layered medium. The dispersion relation for the viscous liquid loa
single-layered anisotropic half-space is given. Numerical examples of the Rayleigh
and Love wave dispersion for the cases of a Cu/Fe layered half-space (isotropic) a
a SiO2 /Si layered half-space (anisotropic) loaded with viscous liquid are calculated
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1 Introduction
Surface waves have been applied successfully in many of

technological fields, such as NDE of materials, seismological
ploration, and SAW devices in electronic industry. Theoreti
analyses of the propagation of surface acoustic waves in lay
media have been reported in the literature. A review of the e
analyses on the dispersion of surface waves in an isotropic lay
medium can be found in the book by Aki and Richards@1#. In the
last decade, the applications of acoustic microscopy and fi
reinforced composites have initiated the interest in studying
wave propagation in layered isotropic or anisotropic media~@2–
4#!. Experimental and inverse analyses of surface waves in
anisotropic medium or layered medium have also been repo
~@5,6#!. On the other hand, the development of the micro-acou
wave sensor in biosensing created the need for further inves
tions of the surface wave propagation in fluid loaded layered
dium. A detailed experimental study of a Love wave sensor
biochemical sensing in liquids was given by Kovacs et al.@7#.
They showed that, for small viscosity, the interaction of an aco
tic Love wave with a viscous liquid can be described by a Ne
tonian liquid model.

In the field of nondestructive evaluation using elastic wav
several investigations on the viscosity-induced attenuation h
also been reported in recent years. On neglecting the heat con
tion effect, Wu and Zhu@8# proposed an approach for studyin
attenuated leaky Rayleigh waves due to viscous damping.
subsequent paper, Zhu and Wu@9# employed the same approac
to study Lamb wave propagation in a plate bordered with a
cous fluid layer. Recently, Nagy and Nayfeh@10# investigated the
viscosity-induced attenuation of longitudinal guided waves in ro
loaded with a fluid layer. In a subsequent paper, on including
viscous effect on the longitudinal wave in a fluid, Nayfeh a
Nagy @11# derived a formal solution and examined the effects
fluid viscosity on the Lamb wave as well as leaky the Rayle
wave. The viscous liquid loaded substrates~layered half-space o
rod! of the above-mentioned investigations are assumed isotro

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
tember 30, 1998; final revision, December 7, 1999. Associate Technical Editor: A
Mal. Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Further, the investigations presented so far are either for a La
wave ~and Rayleigh wave! or Love wave propagation.

In this paper, based on the sextic formalism~@12,13#!, we
present an approach that is suitable for studying both the Rayl
and Love wave propagation in a viscous liquid loaded anisotro
layered half-space. To demonstrate the utilization of this
proach, dispersion relations for the case of a single-layered an
tropic half-space loaded with a viscous liquid are presented.

2 Surface Waves in Viscous Liquid Loaded Aniso-
tropic Layered Solids

In the conventional way of studying the propagation of surfa
waves in an isotropic layered half-space, the element numbe
the determinant, which results from satisfying the appropriate
terface and boundary conditions, increases rapidly with the n
ber of layers overlaying the half-space. For the case of an an
tropic layered half-space, an alternative way is the application
the sextic formalism with special treatment on the numerical s
bility. A stable sextic formalism for the solution of surface wav
was given by Mal to study the anisotropic composite lamin
under periodic surface loads~@12#!. Later, in @13#, another stable
sextic formalism for the anisotropic surface wave solution ba
on the invariant imbedding technique was also given. In the se
formalism, the equation of motion and the constitutive equat
are combined and arranged to form a first-order matrix differen
equation. The displacement and the traction acting across
planes normal to the layering surfaces are grouped into a
dimensional vector. In each layer, the solution of the matrix O
forms a transfer matrix that can be utilized to map the variab
from one surface to the next layering surface. With this formu
tion, the size of the matrix encountered in the computation
independent of the number of layers. It is worth noting that
avoid the numerical instability in the calculation, special tre
ments must be taken. Details of the respective special treatm
can be found in@12# and @13#.

In the literature, Wu and Zhu@8# utilized the Lamb’s viscous
liquid model to solve the solid-viscous liquid interaction pro
lems. In a later paper, Nayfeh and Nagy@11# pointed out that the
model utilized by Wu and Zhu for a viscous liquid has the de
ciency of incorporating the attenuation of a longitudinal wav
They suggested possible models to improve the above deficie
one is modeling the viscous liquid~with the viscous coefficient
denoted asmL! as a hypothetical solid whose shear rigidity equ
ivmL . The other one is the use of the so-called Stokes mo
which split the viscosity parameter betweenC11 andC13. Accord-

p-
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essor
on,
li-
00 by ASME Transactions of the ASME
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ing to their conclusion and our calculations, we note that the
ferences induced by adopting the suggested two different mo
are very small for a low-frequency range.

In the Stokes model for isotropic viscous liquids, we setC11

5k1(4/3)ivmL and C135k2(2/3)ivmL . k5rLcL
2 is the bulk

modulus of the liquid, whererL andcL are the density and lon
gitudinal wave velocity of the viscous liquid. Similar to the wav
propagation in an isotropic elastic solid, the waves in an isotro
viscous liquid can be divided into the in-plane~x-z plane with
displacementsu, w! and the antiplane~with displacementv! mo-
tion. For the in-plane motion, the scalar and vector displacem
potential of the viscous liquidw, c satisfy the Helmholtz equation

¹2w1kL
2w50 (1)

with kL
25v2rL /(k1(4/3)ivmL), and the diffusion equation

]c

]t
2S mL

rL
D¹2c50 (2)

where¹25(]2/]x21]2/]z2).
We note that if the ratiovmL /k is very small, thenkL

2 in Eq.
~1! can be approximated askL

25v2/cL
2. This approximation leads

to a solution similar to the result of Wu and Zhu@8#.
For the case of antiplane motion, the material is only subjec

to the shear deformation, and therefore, the deformed volume
mains unchanged. From the Navier-Stokes equation, the antip
displacementv satisfies the diffusion equation as

]v
]t

2S mL

rL
D¹2v50. (3)
p

c

-

.
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For a harmonic plane progressive wave propagating in thex-z
plane, the scalar potentialw, the vector potentialc, and the anti-
plane displacementv can be assumed in the form as

w5~a1e2 ikz1z1a4e2 ikz4z!ei ~vt2kxx! (4)

c5~a3 ,e2 ikz3z1a6e2 ikz6z!ei ~vt2kxx! (5)

v5~a2e2 ikz2z1a5e2 ikz5z!ei ~vt2kxx! (6)

wherea1 ,a2 ,a3 ,a4 ,a5 ,a6 are unknown constants andkz1 , kz2 ,
and kz3 are the wave numbers of the up-going waves along
positive z-direction, while kz4 , kz5 , and kz6 are those for the
down-going waves. The relations betweenkz1 , kz2 , kz3 , kz4 , kz5 ,
kz6 , andkx can be obtained by substituting Eqs.~4!–~6! into Eqs.
~1!–~3!.

Similar to the derivation of the sextic formalism~@13#!, the
relationships between the tractiont̂a and the velocityv̂a of a vis-
cous liquid for the up-going wave (a51) and down-going wave
(a52) can be obtained as

t̂a~z!5ZaLv̂a~z! a51,2 (7)

whereZ1L ,Z2L are the local impedance of the up-going wave a
down-going waves, respectively, and are defined as

ZaL5LaLAaL
21 a51,2 (8)

where

A1L5F vkx 0 2vkz3

0 iv 0

vkz1 0 vkx

G , A2L5F vkx 0 vkz3

0 iv 0

2vkz1 0 vkx

G
(9)
L1L5F 22ivmLkxkz1 0 ivmL~kz3
2 2kx

2!

0 vmLkz2 0

2k~kz1
2 1kx

2!1
2

3
ivmLkx

22
4

3
ivmLkz1

2 0 22ivmLkxkz3
G (10)

L2L5F 2ivmLkxkz1 0 ivmL~kz3
2 2kx

2!

0 2vmLkz2 0

2k~kz1
2 1kx

2!1
2

3
ivmLkx

22
4

3
ivmLkz1

2 0 2ivmLkxkz3
G . (11)
no
is
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d
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3 Dispersion Relation
Consider an anisotropic layered half-space with elastic pro

ties varied only along thez-axis. If, in each layer~e.g., medium B!
the material is assumed to be homogeneous, then the total tra
t̂(z) in medium B can be expressed as~@13#!

t̂~z!5GB~z!@ ivû~z!# (12)

wherev is the circular frequency andGB(z) is the global imped-
ance which relates the velocity fieldivû(z) to the traction field.
The expression ofGB(z) is given in the Appendix for conve
nience. For a single-layered anisotropic half-space~Fig. 1! with a
traction-free surface, the traction atz5h vanishes, then from Eq
~12! and with the existence of a nontrivial solution we have t
dispersion equation, which relateskx to the circular frequency of
the plane wavev as

detuGBu50. (13)

For the case of a viscous liquid half-space on top of a sing
layered half-space, from Eq.~12!, the traction at the solid-liquid
interface can be written in terms of the particle velocityv̂(h2) as
er-

tion

he

le-

t̂~h2!5GBv̂~h2!. (14)

On the other hand, in the viscous liquid half-space, there is
existing down-going wave; therefore, the global impedance
equivalent to the local impedance of the up-going waveZ1L ,
which is given in Eq.~8!. The tractiont̂(h1) at the interface is
then written as

t̂~h1!5Z1Lv̂~h1!. (15)

From the continuity conditions of the traction and the partic
velocity at the solid-viscous liquid interface, and Eqs.~14!, ~15!,
we find that

~GB2Z1L!v̂~h!50. (16)

For the existence of a nontrivial solution of the particle veloc
at the interface, the following condition must be satisfied, i.e.,

detuGB2Z1Lu50. (17)

Equation ~17! is the dispersion relation for a viscous liqui
loaded single-layered anisotropic half-space. The relative ma
tude of the interface velocity vectorv̂(h) can be obtained by sub
JUNE 2000, Vol. 67 Õ 263
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stitutingkx andv ~which satisfy Eq.~17!! into Eq.~16!. Once the
interface velocity vector is obtained, the traction vector at
interfacet̂(h) can be obtained from Eq.~14! or ~15!. The particle
velocity and the traction vectors at any position in the visco
liquid half-space, interface layer, and the solid half-space can
be evaluated, in a straightforward way, from the known vect
v̂(h), t̂(h).

4 Numerical Calculations
In the following numerical simulations, both the Rayleigh wa

and Love wave in a single-layered isotropic as well as anisotro
half-spaces loaded with viscous liquid are considered. In part
lar, the numerical result for the Love wave in a viscous liqu
loaded single-layered half-space was simulated and comp
with those in@7#.

4.1 Isotropic Single-Layered Half-Space Loaded With Vis-
cous Liquid. In @7#, the propagation of a Love wave in a vis
cous liquid loaded single-layered half-space was given. In th
calculation, the substrate~ST-cut quartz! was approximated as a
isotropic substrate with similar properties~r52200 kg/m3, m
51.7431010 N/m2!. The properties of the surface SiO2 layer (h
51.46mm) werer52650 kg/m3, m56.631010 N/m2. The oper-
ating frequency of the Love wave sensor assumed waf
5123.5 MHz. Figure 2 shows the frequency shift~uD f u/ f in per-
centage! and the attenuation~uIm kxu/Rekx in percentage! as func-
tions ofAvhr, which was calculated based on the current form
lation. The results shown in Fig. 2 are exactly the same as th
shown in Fig. 5 of@7#.

In the following calculations, the case of an isotropic Fe ha
space with Cu surface layer~20 mm in thickness! is considered.
The material properties of polycrystalline Cu and Fe are

Fig. 1 The coordinates of the single-layered half-space

Fig. 2 The frequency shift and attenuation of Love wave in a
viscous liquid loaded single-layered half-space „isotropic ST-
cut quartz …
264 Õ Vol. 67, JUNE 2000
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Cu: r58500 kg/m3, l511.231010 N/m2,

m54.3931010 N/m2.

Fe: r57870 kg/m3, l511.331010 N/m2,

m58.231010 N/m2.

To understand the influence of the liquid density on the atte
ation of the fundamental Love wave, two frequencies~20 MHz
and 300 MHz! were chosen for the following simulations~Figs. 3
and 4!. In the figures,rS is the density of the substrate~Fe!. The
dotted line represents an ideal liquid loaded on the Cu-Fe laye
half-space, and the solid and bold solid lines represent the cas
moderate viscous liquid loading (mL50.1 N.s/m2) and highly vis-
cous liquid loading (mL51 N.s/m2), respectively. The resul
shows that the bigger therL /rS ratio, the higher the attenuation o
the Love waves. The attenuation of the Love wave is depend
on the magnitude of the viscosity as well as the frequency. Res
also showed that there is more than a one order difference
tween the Love wave attenuation for operating on 20 MHz a
300 MHz.

On the phase velocity dispersion of the fundamental Rayle
surface wave mode, numerical results showed that the increa
viscosity results in a slight decrease of the Rayleigh wave ve
ity. For example, at a frequency equal to 400 MHz, the Rayle

Fig. 3 The Love wave attenuation as a function of the density
ratio rL Õrs in a liquid loaded Cu-Fe layered half-space „isotro-
pic …, the frequency is equal to 20 MHz

Fig. 4 The Love wave attenuation as a function of the density
ratio rL ÕrS in a liquid loaded Cu-Fe layered half-space „isotro-
pic …, the frequency is equal to 300 MHz
Transactions of the ASME
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wave velocity of the ideal liquid case is 2129.8 m/s, while that
the highly viscous liquid case is 2113.8 m/s. For the case of L
wave velocity, we note that the increase of viscosity results i
negligible change in wave velocity.

4.2 Anisotropic Single-Layered Half-Space Loaded With
Viscous Liquid. In this subsection, we consider propagation
surface waves in an anisotropic single-layered half space loa
with viscous liquid. The viscous liquid loadings considered are
moderate viscosity (mL50.1 N.s/m2) and high viscosity (mL

51 N.s/m2) cases. The properties of the anisotropic silicon ha
space and the surface layer~isotropic SiO2, 20 mm! are given as
SiO2:

r52332 kg/m3, C11516.631010 N/m2,

C1256.431010 N/m2, C4456.431010 N/m2

Si:

r52200 kg/m3, C1157.8531010 N/m2,

C1251.6131010 N/m2, C4453.1231010 N/m2.

Figure 5 shows the calculated results for the fundamental R
leigh wave propagating on the@001# surface along the direction
with 15 deg away from@100# axis. From the figure, as compare
with the case of free single-layered half-space~dotted line!, one
finds that at a fixed frequency, an ideal liquid loading results i
slight increase of the Rayleigh wave velocity. Similar to that of
isotropic single-layered half-space, the Rayleigh wave velo

Fig. 5 The phase velocity dispersion of the Rayleigh surface
wave in a liquid loaded SiO 2–Si layered half-space „anisotrop-
ic …. The Rayleigh wave is propagating on the †001‡ surface and
along the direction with 15 deg away from †100‡ axis.

Fig. 6 The attenuation of the Rayleigh surface wave in a liquid
loaded SiO 2–Si layered half-space „anisotropic …. The Rayleigh
wave is propagating on the †001‡ surface and along the direc-
tion with 15 deg away from †100‡ axis.
for
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decreases as the frequency increases. For frequency high en
the dispersion of the phase velocities approach that of a liq
loaded SiO2 half-space. Figure 6 presents the corresponding
tenuation of the cases shown in Fig. 5. We note that the
attenuation of the ideal liquid case is due to the leak of energy
the liquid half-space.

Figure 7 shows the calculated results for the attenuation of
fundamental Love wave propagating along the direction 15
away from the@100# axis. It is noted that there is no attenuatio
due to an ideal liquid loading. On examining the magnitudes
the attenuation of the Rayleigh wave~Fig. 6! and Love wave~Fig.
7!, we found that the Love wave attenuation is much smaller th
that of the Rayleigh wave.

Figure 8 shows the distribution of the particle velocity comp
nents along the depth. The calculated results are for the fun
mental Love wave propagating along the direction with 15 d
away from the@100# axis and with the frequency equal to 25 MH
and viscosity equal tomL51 N.s/m2. Due to the anisotropy of the
substrate, we note that in-plane particle velocity compone
(v1 ,v3) are not vanishing. However, the amplitude of the an
plane velocity componentv2 is much larger than that of the in
plane components. In addition, most of the energy of the Lo
wave is confined around the surface SiO2 layer ~about 0.1 to 0.2
wavelengths!.

5 Concluding Remarks
In this paper we have employed the sextic formalism of surf

waves to study the viscous effect on the dispersion relation
surface wave propagation in a viscous liquid loaded layered
dium. The dispersion relations for a viscous liquid loaded sing
layered anisotropic half-space are given. Numerical examples

Fig. 8 The distribution of the particle velocity components for
the Love wave propagating along the direction with 15 deg
away from †100‡ axis „fÄ25 MHz and mLÄ1 N.sÕm2

…

Fig. 7 The attenuation of the Love wave in a liquid loaded
SiO2ÀSi layered half-space „anisotropic …. The Love wave is
propagating on the †001‡ surface and along the direction with
15 deg away from †100‡ axis.
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both the cases of isotropic and anisotropic substrates were c
lated. The results showed that, for the isotropic case, the ca
lated results are in agreement with those of the existing refere
Due to the leaky feature of the Rayleigh wave in a liquid joint
half-space, the attenuation of the Rayleigh wave is much big
than that of the Love wave. The attenuation of the propagatio
the Love wave is solely due to the viscous effect of the load
viscous liquid. Finally, we note that the current formulation can
utilized to study the Rayleigh wave and the Love wave propa
tion in a viscous liquid loaded anisotropic layered structure.
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Appendix

GB~z!5@Z1W1~z!RBAW2
21~z!1Z2#

3@W1~z!RBAW2
21~z!1I #21

Za52
1

v
LaAa

21, Wa~z!5AaFa~z!Aa
21, a51,2

F1~z!5diag~e2 ikz1z,e2 ikz2z,e2 ikz3z!

F2~z!5diag~e2 ikz4z,e2 ikz5z,e2 ikz6z!

RBA5@Z12GA#21@GA2Z2#
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whereGA is the global impedance of the adjacent mediumA. La ,
Aa are 333 matrices, which are generated from the six eigenv
tors.
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Linköping University,
S581 83 Linköping, Sweden

Study of Frictional Impact Using a
Nonsmooth Equations Solver
In this paper a mathematical formulation and a numerical algorithm for the analysi
impact of rigid bodies against rigid obstacles are developed. The paper concentrat
three-dimensional motion using a direct approach where the impenetrability cond
and Coulomb’s law of friction are formulated as equations, which are not differentiab
the usual sense, and solved together with the equations of motion and necessary
matical relations using Newton’s method. An experiment has also been performe
compared with predictions of the algorithm, with favorable results.
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1 Introduction
This paper is concerned with a method for the analysis of

pact of rigid bodies against rigid obstacles. Some problems of
kind can be treated by specifying the quotient between the rela
normal velocity of approach and separation~@1#!; i.e., by introduc-
ing the classical coefficient of restitution. This is sometimes g
eralized to what is known as Poisson’s hypothesis~see@2#!. In
many cases, however, such as in the experiment described in
tion 3 below, it is necessary to take both the normal and
tangential impulse at the impact into account to achieve rea
able agreement with observations. This class of problems has
the object of several recent studies, invariably leading to the
troduction of one or more additional constitutive parameters, s
as the coefficient of friction. Thus, in Brach@3#, a quotient be-
tween normal and tangential impulses are introduced and se
bounds, based on physical assumptions, are derived for this
tient. In Stronge@4#, the division of the impact process into
compression and an expansion phase is analyzed, and the pro
is treated using a coefficient of restitution relating energies ra
than velocities. Walton@5# suggests a model involving three p
rameters which for the special case of spheres is equivalent to
model used in the present paper.

The approach in the references cited above, as well as in
present paper, is to use rigid-body dynamics combined with p
contact laws. An important question is, of course, how accura
the impact behavior of a physical body can be modeled usin
theory based on rigid-body motion and point contact laws wit
few constitutive parameters. Recent work addressing this is
include Stoianovici and Hurmuzlu@6#, where a slender bar is
dropped onto a massive surface. The~classical! coefficient of res-
titution is found to depend strongly on the orientation of the b
something which is ascribed to the onset of vibrations in the b
and that the impacts are actually divided into a series of mic
impacts. In Calsamiglia et al.@7# the coefficient of friction for
disks impacting a massive surface is found to depend on the
clination angle. This is attributed to an elastic mechanism wh
nominally sliding contacts actually stops sliding and then resum
sliding in the same direction during impact.

In the present paper the impenetrability condition and C
lomb’s law of friction are formulated in terms of velocities an
impulses rather than displacements and forces. Since the ve
ties are not necessarily continuous, it is assumed that these
apply to a linear combination of the left and right limits of th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
13, 1999; final revision, Nov. 1, 1999. Associate Technical Editor: N. C. Perk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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velocities, which are assumed to exist. These velocities are, a
approximation, replaced with the velocities at the beginning a
end of a time step in the overall algorithm. This is the approach
Moreau, as described in Moreau@8# a paper which is much con
cerned with the mathematical setting of the problem, but whe
very elegant algorithm for the case of completely inelastic impa
is also given. See also Moreau@9#, where granular materials ar
simulated with an algorithm involving iteration between the co
tact laws and the equations of motion.

In a previous paper@10#, the present problem, in the two
dimensional case, was solved using an algorithm based on a
mulation as a linear complementarity problem~LCP!. This ap-
proach seems to be less attractive for three-dimensional probl
and in this paper the problem is instead formulated in the form
a system of nonsmooth equations, to which Newton’s metho
applied directly. This is an adaption to the present class of pr
lems of the method developed for elastostatic contact problem
Christensen et al.@11#, which, in turn, is a development of th
method of Alart and Curnier@12#.

The predictions of the model used in this paper are also c
pared with an experiment performed for this purpose, and with
experiment discussed in more detail in an earlier paper,@10#.

2 Governing Equations
In this section, relations governing the three-dimensional m

tion of a rigid body that comes into frictional contact with a rig
wall will be stated~Fig. 1!. The rigid wall is assumed to be flat

The contact conditions are most easily written in a coordin
frame attached to the wall, since the normal to the wall is cons
in such a frame. On the other hand, an inconvenience is that
inertia tensor is then nonconstant. In the present work it was
cided to write the rotational equation of motion with reference
a body-fixed frame where the inertia tensor is constant, and
translational equation of motion and contact conditions in a fra
fixed to the rigid wall. This is one of several possible choices,
it seems unavoidable that the transformation between a fram
tached to the wall and one attached to the body enters the for
lation at some point.

We also note in this respect that the orientation of the body w
described using quaternions~@13#!, and these are most commonl
although not necessarily integrated from the angular velocity co
ponents in terms of a body attached frame. Thus, two coordin
systems are introduced, movingx8y8z8-coordinates fixed in the
body and oriented along its principal axes of inertia and iner
xyz-coordinates with they-axis normal andx andz-axes parallel
to the rigid wall. The equations introduced below can be regar
as vector-matrix equations, where vectors are three-dimensi
column vectors consisting of components of physical vectors r
tive to one of these coordinate frames while matrices are opera
relating such vectors. The contact impulsesP, external impulses
F, the velocityẋ of the contact point, the velocityẋG of the center
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of mass and the position vectorr and related matrixR expressing
the location of the contact point, are all written in terms of the
xyz-components, while the inertia tensorI8 and the angular ve-
locity v8 are written in terms of theirx8y8z8-components.

2.1 Equations of Motion and Kinematical Equations.
The linear equations of motion are written in integrated form
terms of velocities and impulses and expressed
xyz-components as

mẋG
2 5mẋG

1 1P1F. (1)

Here,m5m1, m being the mass of the body and1 the identity
matrix. ẋG

1 andẋG
2 are the velocities of the center of mass at tim

t1 and t2 , t1,t2 , respectively. Here and elsewhere in this pap
superscripts 1 and 2 denote the value of a quantity at timest1 and
t2 , respectively.P5(Ptx ,Pn ,Ptz)

t are the contact impulses dur
ing the time interval@ t1 ,t2#. A superscriptt indicates transpose o
a vector or matrix. These contact impulses are obtained from
tegration of a vector valued measuredP:

P5E
@ t1 ,t2#

dP.

For smooth contact situations,dP5P̄dt, where P̄ is a contact
force vector, and*@ t1 ,t2# is the standard Lebesgue integral. In ca
of impact, when the velocities are discontinuous,dP is a singular
measure of ‘‘Dirac’’ type, a so-called percussion. We refer
Moreau@9# for a detailed discussion of these issues.F are known
impulses from external forces. These forces are assumed to a
the center of mass of the body and are therefore not present in
moment equation given below.

The moment equations are written inx8y8z8-components:

I 8v825I 8v812E
t1

t2
G~v8!dt1E

@ t1 ,t2#

ARdP. (2)

Here,I8 is the inertia tensor, which in thex8y8z8-system becomes
a constant diagonal matrix with componentsI x8 , I y8 , andI z8 . A
is the transformation matrix from xyz-coordinates to
x8y8z8-coordinates such thatP85AP, whereP8 andP are the two
representations of a geometrical vector.R is the antisymmetric
matrix of components ofr such thatRP5r3P, where3 is the
ordinary vector product. The vector of gyroscopic terms can
written in x8y8z8-components as

Fig. 1 Geometry of the contact
268 Õ Vol. 67, JUNE 2000
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G~v8!5F vy8vz8~ I z82I y8!

vx8vz8~ I x82I z8!

vx8vy8~ I y82I x8!
G . (3)

The kinematic relations relating the velocities at the cont
interface with the velocity at the center of mass are written as

ẋ5 ẋG1~Atv8!3r5 ẋG1~AR! tv8. (4)

2.2 Contact Conditions. In this section we assume tha
contact between the rigid body and the obstacle wall has b
detected, i.e., the impenetrability conditiony>0 is fulfilled with
equality, and conditions will be formulated to ensure that the bo
either stays in contact or breaks away, but does not penetrat
the numerical implementation a small penetration is accep
without correction~see Section 2.4 below!. The velocity of the
rigid body at the contact interface isẋ5( ẋ,ẏ,ż) t and expressed by
~4!. These velocities together with the contact impulses will
used to formulate contact-impact constitutive laws. Note tha
the present situation it cannot be assumed thatẋ is continuous or
even that it exists at all times. This is obvious for the case of
impact, but in fact other cases of discontinuous velocities
occur, as is shown by the Painleve´ example~see Brogliato@14#!.
To resolve this difficulty it is assumed, following Moreau@9#, that
the right and left limits ofẋ exist, and that as a generalization
the Signorini contact condition from static or quasi-static situ
tions to the impact case, we may state

ẏa>0, Pn>0, Pnẏa50, (5)

where

ẏa5
en

11en
ẏ2~ t1!1

1

11en
ẏ1~ t2!

is an average velocity,en is a constitutive parameter discussed
Section 2.5, andẏ2(t1) and ẏ1(t2) are the left limit ofẏ at time
t1 and the right limit ofẏ at timet2 , respectively. Note that~5! is
stated for a time interval, but makes sense also if the time inte
is shrunk to time a instant. Furthermore, it can be shown that
smooth motion, whenẋ is continuous,~5! simplifies to the stan-
dard Signorini conditions. A further rationale behind~5! is that if
the first inequality is activated at all times when contact occu
then impenetrability will be enforced~@9#!. Thus, the contact law
as stated here is applicable both to cases of impact and c
where the contact forces are smooth.

Relation~5! is a complementarity condition and this is a mat
ematical system that has been much studied in the area of m
ematical programming. The number of numerical methods
vised to deal with such and related systems is quite extens
both in the mathematical and the engineering literature. Rece
however, it has become clear for the case of quasi-static frictio
contact problems~Alart and Curnier@12# and Christensen et al
@11#! that a most effective method is based on writing the probl
as a system of nondifferentiable equations and applying a New
method specially devised for such equations~@15#!. Here, we will
use a similar approach for frictional impact problems. To that e
we need to rewrite~5! as an equation and, following@16#, a first
step is to state~5! as a variational inequality:

PnPKn : ẏa~Pn* 2Pn!>0 ;Pn* PKn , (6)

where

Kn5$PnuPn>0%.

This variational inequality can be rewritten as

PnPKn : ~Pn2~Pn2r nẏa!!~Pn* 2Pn!>0 ;Pn* PKn ,
(7)

wherer n.0 is a parameter which we eventually will be able
adjust for best numerical performance; note, however, that~7! is
equivalent to~5! for any positive value ofr n . It is well known
Transactions of the ASME
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that ~7! indicates a projection onto the setKn , and due to the
simplicity of this set we end up with a most useful representat
of ~5!:

Pn5Proj@Pn2r nẏa,Kn#5~Pn2r nẏa!1 , (8)

where (x)15max(x,0). Thus, we are able to write the compl
mentarity condition~5! as an equation. Even though this equati
is not differentiable, it opens the way for the use of a Newton-ty
algorithm.

Next we need to write Coulomb’s law of friction in a way suc
that discontinuous velocities and percussions are included. C
lomb’s friction law implies firstly that the friction force belongs t
a cone of forces, the friction coefficient being the measure of
pointedness of this cone, and secondly that when sliding occu
is in the opposite direction of the force. These principles can, a
well known ~see, e.g., Christensen et al.@11#!, be put in the math-
ematical form of a variational inequality. By choosing to wri
this variational inequality in terms of an average velocity a
impulses, instead of velocity and forces as in the classical sm
case, we obtain a formulation of friction which includes impa
and which reduces to the classical Coulomb friction law for sl
ing contact without impact. We thus put down our law of frictio
as follows:

PtPKt~Pn!: ~ẇa! t~Pt* 2Pt!>0 ;Pt* PKt~Pn!, (9)

wherePt5(Ptx ,Ptz)
t,

Kt~Pn!5$PtuuPtu<mPn%,

ẇa5
et

11et
ẇ2~ t1!1

1

11et
ẇ1~ t2!,

ẇ1 andẇ2 are right and left-hand limits ofẇ5( ẋ,ż) t andet is a
constitutive parameter discussed in Section 2.5. Similarly to~6!
this variational inequality may be rewritten as a projection:

Pt5Proj@Pt2r tẇ
a,Kt~Pn!#, (10)

where r t.0 is a parameter, which can be adjusted to impro
numerical performance. It is possible to conclude that~10! is a
continuous equation which, however, is not differentiable eve
where.

2.3 Discretization and Formulation as a System of Nonlin-
ear Equations. For the discretization, a sequence of tim
@ t1 , . . . ,t j ,t j 11 , . . . ,tn# is introduced. Equations~1!, ~2!, ~4!,
~8!, and~10! will be discretized to form a system of 12 nonline
equations for 12 unknowns at timet j 11 , assuming that everything
is known at timet j . These equations can be solved for the u
known quantities at timet j 11 . The solution can then be advance
in time by repeating this process until the desired time interva
covered.

First, assuming thatF or a suitable approximation ofF is
known, no further discretization is necessary in Eq.~1! and we
have

f15mẋ G
j 112mẋ G

j 2P2F50. (11)

To discretize Eq.~2! we put

E
t j

t j 11

G~v8!dt5Dt@jG~v8 j !1~12j!G~v8 j 11!#, (12)

where j is a discretization parameter usually set toj50.5 and
Dt5t j 112t j . It is further assumed thatA5A(t) and R5R(t)
are constant and known: In practice these are computed from
position of the body at the beginning of the time step, i.e.,A(t)
5A(t j ) andR(t)5R(t j ). Equation~2! then gives

f25I 8v8 j 112I 8v8 j1jDtG~v8 j !

1~12j!DtG~v8 j 11!2ARP50. (13)
Journal of Applied Mechanics
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It would perhaps be appropriate to discretizeA andR in the same
way asG. However,G depends on the angular velocity, whic
cannot be assumed to be continuous, whereasA andR depend on
position, which is assumed to be continuous. It was theref
deemed less important to include the value of the quantity at t
t j 11 in the discretization ofA andR than in the discretization of
G. Further, note that we aim at a system of equations with velo
ties, angular velocities, and contact impulses as unknowns, anA
and R depend on position. Using a discretization involvin
A(t j 11) and R(t j 11) would require either adding the equation
for the position to the system of equations instead of compu
the position in a second stage, or else using an iterative proced
Although this would be quite possible, it was decided to sacrifi
this improvement of accuracy in the interest of simplicity.

To discretize~4! it is only necessary to assume thatA andR are
constant and known. Writing the equation at timet j 11 then gives

f35 ẋ j 112 ẋ G
j 112~AR! tv8 j 1150. (14)

Finally, to discretize~8! and ~10! it is assumed that the righ
and left limits of the velocities can be approximated with t
velocities at the beginning and end of a time step of the discr
zation. Equations~8! and ~10! then give:

f 45Pn2S Pn2r nS en

11en
ẏ j1

1

11en
ẏ j 11D D

1

50, (15)

f55Pt2ProjFPt2r tS et

11et
v̇ j1

1

11et
v̇ j 11D ,Kt~~Pn!1!G50,

(16)

where Kt(Pn) has been replaced withKt((Pn)1), following
Christensen et al.@11#.

2.4 Solution of the Equations. Equations~11!, ~13!, ~14!,
~15!, and~16! form a system of 12 nonlinear equations for the
unknowns ẋ j 11, ẋ G

j 11, v8 j 11, and P. Putting f
5(f 1

t ,f 2
t ,f 3

t , f 4 ,f 5
t ) t the solution is found by a direct applicatio

of Newton’s method to the equationf50. This equation is not
differentiable in the usual sense, but has the property of be
B-differentiable, meaning essentially that directional derivativ
exist at each point. This makes it possible to apply the New
method deviced for such equations by Pang@15#. Here, a some-
what simplified version of this method was used where the n
essary derivatives were computed by arbitrarily picking one s
directional derivative at nondifferentiable points~see Christensen
et al. @11#!.

The necessary derivatives off1 , f2 , andf3 are easily calculated
those off 4 and f5 are considerably more complicated. Howeve
these equations can be formally identified with the correspond
equations for the quasistatic case discussed in Christensen
@11# where the derivatives are given. The solution requires so
tuning of the numerical parametersr n and r t . The line search
suggested by Pang~see Christensen et al.@11#! was tested. It did
not show any obvious advantage for the computations for
present paper, but might be necessary for cases with mul
simultaneous contact points.

The overall aim of the algorithm is to compute the positio
angular orientation, velocity, and angular velocity at timet j 11 ,
assuming that these quantities are known at an earlier timet j . To
compute the velocities, it is first checked if the body is in conta
i.e., if the impenetrability conditiony>0 is fulfilled with equality,
or violated by some small amount. If it is, the velocities at tim
t j 11 are computed by solving all the equations in Section
simultaneously. This calculation proceeds from the position
body had at the end of the previous time step, accepting with
correction a small violation of the impenetrability condition an
assuming thatA and R are constant throughout the time step
their values at the beginning of the time step. If no contact c
dition is violated, only Eqs.~11! and ~13! need to be solved and
the terms involvingA andR disappear.
JUNE 2000, Vol. 67 Õ 269
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When the velocities and angular velocities have been c
puted, the position and orientation of the body can be compu
For the orientation of the body quaternions were used~see Stevens
and Lewis@11#!.

If the motion of a system of bodies interconnected with sprin
and dashpots is sought, the applied loads cannot be assumed
known at timet j 11 , since, in order to incorporate the forces fro
the connecting springs and dashpots, they must be assum
depend on positions and velocities at timet j 11 . This difficulty
can be resolved iteratively and if such an iteration is introduce
is also possible to use better approximations toA and R if so
desired.

2.5 Physical Interpretation of the Parametersen and et .
It should be noted~Moreau@9#!, that the constitutive parameter
en andet introduced above will determine the nature of the co
tact. Considering the case of impact there is a nonzero nor
impulse,Pn.0, and~5! implies

ẏ152enẏ2. (17)

Thus, the parameteren can be interpreted as a restitution coef
cient with en50 corresponding to purely plastic impact anden
51 to purely elastic impact.

In the tangential direction there can be either stick or slip. If
coefficient of friction is sufficiently large that there is no slip, ea
component ofPt* 2Pt can be either positive or negative, and~9!
implies

ẇ152etẇ
2, (18)

andet can be interpreted as a tangential restitution coefficien
should be noted, however, that the interpretation ofet as a tan-
gential restitution coefficient is possible only for large values
m, since the tangential impulse is limited by Coulomb’s law
friction, and in the sliding case, for a nonspherical body, there
coupling between normal and tangential contact impulses wh
complicates things further. It should also be noted that the op
site direction of tangential velocity and tangential contact impu
as required by Coulomb’s law is applied to the linear combinat
et /(11et)ẇ

211/(11et)ẇ
1, which does not necessarily impl

that the tangential contact impulse is opposite toẇ2.
It should be noted that the parametersen and et follows as a

consequence from using contact laws of the form~5! and ~9!.
Since these equations should be valid also at a time instant w
there is a discontinuity in velocity, the velocity components the
selves cannot be used. When this issue is resolved by using
ages of the left and right limits of the velocity components, t
parametersen andet appear naturally.

With the introduction of these restitution coefficients, there i
total number of three parameters describing the impact procesm,
en , andet . This is somewhat problematic, since these parame
must be determined experimentally. In particular there is no
vious simple method for measuringet . This topic is discussed
further in Section 3.

3 Comparison With Experiments
An experiment was performed where a body, consisting of t

rubber balls~superballs! glued to a cylinder, was thrown so as
bounce from a wooden surface. The process was photograph
stroboscopic light and the positions measured from the ph
graphs were compared to calculations with the above algorit
One such photograph is shown in Fig 2. This is the photogr
actually used for the comparisons below, and was selected fro
series of similar photographs because, as far as could be ju
from a 29 cm by 23 cm blowup, the motion occurs in a sing
plane. The motion occurs in a plane about 3 cm in front of
ruler also seen on the photograph.

In a previous paper~Johansson@10#! an experiment is reported
where a single ball is thrown into the space between two surfa
The ball bounces first on the lower surface, then on the upper
270 Õ Vol. 67, JUNE 2000
m-
ted.

gs
to be

d to

d it

s
n-
mal

-

he
h

. It

of
of
s a
ich
po-
lse
on

here
m-
ver-

he

a
:

ters
b-

wo
o
d in
to-
m.
ph
m a
ged
le
he

es.
and

then a second time on the lower, before exiting in approximat
the same direction as it was entering. The mechanism is that
ball starts to rotate rapidly at the first impact. This causes
relative tangential velocity at the second impact to be lar
enough so that the ball changes direction and returns again in
same general direction as it was thrown from. The process
photographed in stroboscopic light, to produce photographs of
same type as that shown in Fig. 2. The motion was compare
calculations performed with a different algorithm than in th
present work, but the model is the same, so that the results
cases where both algorithms can be used are identical excep
differences in numerical error. To perform the comparison t
normal coefficient of restitution and the coefficient of frictio
were measured directly, but no direct method of measuring
tangential coefficient of restitution was available. However, a
justing et to obtain a good fit resulted in the good agreeme
between experiments and calculations shown in Fig. 3, wh
shows the computed and measured positions of the ball at dif
ent times. Here the crosses are experimental points, the fi
circles are calculated points and the circles are numbered in o
of increasing time.

The present experiment is a companion experiment to the
in Johansson@10# outlined above, and was performed for tw
main reasons. First, since there is no obvious simple experimen
measure the tangential coefficient of restitution, it was desired
test if the value ofet obtained by adjusting computations to th
experimental findings in the single ball experiments could be u
to predict the motion of a composite body as used in the pres
experiment, where the contact surface is on one of the balls u
in the single ball experiment. Secondly, when using balls,
geometry results in a decoupling of the tangential and norm
directions. This is because a normal contact impulse does
influence the rotation of a ball and therefore does not affect
tangential velocity, and a tangential contact impulse does not
fluence the normal contact velocity since the rotation of a b
does not influence the normal contact velocity. Thus, it was
sired to test a case where this decoupling does not occur.

Next the experimental setup is described. Measured values
given with more significant figures than actually warranted by t
precision of measurements, and the last digit should not
trusted. For the coefficient of friction an approximate interval
given, giving some indication of the precision of these measu
ments.

The body used consisted of two rubber balls, of the type av
able in toy stores glued to a paper cylinder, as seen in Fig. 2.
mass of the composite body was 0.02315 kg the moment of ine
about the axis where rotation occurs in the present experiment
3.968•1026 kgm2. The distance between the centers of the ba

Fig. 2 Photograph from the experiments
Transactions of the ASME
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Fig. 3 Comparison with experiment and computations for single ball case
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was 0.0914 m and the radius of the balls 0.0131 m. The body
thrown on a wooden table, with width 0.6000 m. The length sc
was inferred from the length of the paper tube holding the b
together, which was 0.0702 m.

The flight of the body was photographed from a distance
about 0.9 meters with a Nikon SLR camera with a 35 mm lens
at aperture f/5.6, using Kodak TMAX 400 film. The body wa
thrown by hand after releasing the shutter, which was set to
This was repeated for a series of photographs and one wher
motion of the body was in a single plane, as far as could be jud
from a large scale blowup, was selected. The setup was illu
nated by a Bruel & Kjaer strobe light. The frequency was set to
Hz, but a more accurate time interval ofDt50.0313 s between
flashes was computed by analyzing a photograph of a ball in
fall taken for this purpose.

Fig. 4 Comparison between experiments and computations
using etÄ0.68 as obtained from single ball experiment
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the
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The normal coefficient of restitution was determined by me
suring the rebound from a 1 mdrop of a single ball and was foun
to been50.91. The coefficient of friction was measured by pu
ing four balls glued to an aluminum weight along the surfac
These measurements were made independently by three diff
persons, not involved in the computations or in other parts of
experiment, in order to avoid any bias. It was found that the
namic coefficient of friction wasm51.1360.2. There was an ap
preciable difference between static and dynamic friction, the st
value being about 1.6. It turned out in the calculations that
contact was well into the stick region so the exact value ofm does
not actually matter, and the valuem51.13 was used.

To compare computations with experiment, initial conditio
were obtained by measuring the first and third positions of
body in Fig. 2, which are before the bounce, knowing the time

Fig. 5 Comparison between experiments and computations
using etÄenÄ0.91
JUNE 2000, Vol. 67 Õ 271
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Fig. 6 Energy balance corresponding to Fig. 4
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between. The time interval used in the computations was take
0.000313 s, which is one hundredth of the time interval of
strobe light.

Figures 4 and 5 show a comparison of the measured and c
puted positions of the body at different times. Here, the figu
mimicking the actual appearance of the body shows the comp
positions, whereas the solid black rectangle shows the experim
tal positions. The positions are numbered in order of increas
time. Figure 4 shows the computations usinget50.68 as obtained
from the single ball experiment in Johansson@10# as discussed
above, whereas in the computations for Fig. 5 the tangential
efficient was set equal to the normal coefficient of restitution~as
obtained from dropping a single ball!, en5et50.91.

It is interesting to note that both computations give a reason
agreement with experiment, but that the computation withen
5et is better. It is also interesting that the computed tangen
contact impulses are actually in opposite directions in the
computations. In Fig. 4 the contact impulse is in the same di
tion as the gross motion of the body, whereas in Fig. 5 it is in
opposite direction, as expected intuitively. The mechanism is
follows: The normal contact impulse will cause the body to rota
giving the contact point a velocity opposite to that of the cente
mass. With a high coefficient of friction the contact is in the sti
region, and the tangential coefficient of restitution places a li
on the allowed post-impact tangential velocity of the cont
point. Thus, ifet is small, a tangential impulse in the direction
the pre-impact motion, opposite to what is intuitively expected
necessary to keep the post-impact tangential velocity from
ceeding the value given by~18!. Actually, this mechanism can b
exploited to construct examples where energy is gained at
impact; indeed, this will happen in the present case if we cha
the coefficients of restitution toen51 andet50. It has, however,
been shown by Moreau@9# that this will never occur ifen5et .
The energy balance corresponding to the motion in Fig. 4
shown in Fig. 6 and it is seen that in this case the body loo
energy at impact as expected.

In conclusion, it seems that puttingen5et is the prudent choice
to make if no value from a situation very close to that which o
wants to model is at hand. This also seems natural if the use
linear combination of the left and right limits of the velocities
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Eqs.~5! and ~9! is interpreted as specifying an intermediate tim
during the contact process at which the contact laws are app

4 A Numerical Example
Since the section on experimental verification above o

shows calculations with motion in a plane and with stick con
tions prevailing at the contact, an example involving thre
dimensional motion and slip at the contact is given here. The b
used in this calculation consists of two solid spheres with 1
mass and 0.5 m radius connected with a 4 m massless rod betwee
their centers of mass. The coefficients of restitution areen5et
51 and the coefficient of friction ism50.2. The body is subject to
a downwards gravitational force and is released at 20 m he

Fig. 7 Motion in the three dimensional example
Transactions of the ASME
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with a horizontal 10 m/s velocity. The axis of rotational symme
is tilted 0.2 rad in the plane perpendicular to the direction of
initial velocity. The time step used in the calculation
0.008333333 s.

The resulting motion is shown in Fig. 7, where the body
plotted four times each second. When the body hits the gro
there is a tangential contact impulse which is not in the direct
opposite to the initial velocity, because of the tilt. The body b
gins to rotate, and the subsequent motion is not in the pl
spanned by the initial velocity and gravitational direction.

5 Conclusions
In this paper a mathematical formulation and an algorithm

rigid-body impact with friction has been developed, where
governing laws are formulated as a system of B-differentia
equations which are solved directly with Newton’s method. T
method has performed very satisfactorily numerically. An int
esting extension of the present work would be to test the per
mance of the method in cases of large numbers of simultane
contacts, such as granular flow.

The predictions of the algorithm has also been compared
experiments, showing good agreement. An interesting point is
the agreement between computations and experiment was ac
found to be better when puttingen5et rather than relying on
values foret previously found by analyzing single ball exper
ments. Since this choice will guarantee the energy consistenc
the algorithm, it seems that this is the prudent choice to make i
experimental value from a situation very close to that which o
wants to model is at hand.
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Unsteady Laminar Duct Flow With
a Given Volume Flow Rate
Variation
In this paper we give a procedure to obtain analytical solutions for unsteady laminar
in an infinitely long pipe with circular cross section, and in an infinitely long tw
dimensional channel, created by an arbitrary but given volume flow rate with time. In
literature, solutions have been reported when the pressure gradient variation with tim
prescribed but not when the volume flow rate variation is. We present some example
the flow rate has a trapezoidal variation with time, (b) impulsively started flow, (c) f
developed flow in a pipe is impulsively blocked, and (d) starting from rest the volume
rate oscillates sinusoidally.@S0021-8936~00!01702-5#
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1 Introduction
The solution for laminar flow in a pipe for a prescribed tim

variation of an axial pressure gradient is well known~see, for
example, Szymanski@1# for impulsively imposed pressure grad
ent and Uchida@2# for sinusoidally varying pressure gradient!.
However, an analytical solution when the volume flow rate
prescribed as a function of time has not been reported in
literature. The temporal decay of a fully developed pipe and ch
nel flow following a sudden blockage is discussed by Weinba
and Parker@3#. They obtain the velocity using an approxima
Pohlhausen-type analysis. In this paper we give a method to
tain analytically the velocity for an arbitrary, but given, flow ra
Q(t), in a pipe of circular cross section and in a two-dimensio
channel.

Cases where the volume flow rate variation is known, rat
than the pressure gradient variation, are frequently encounte
Sudden blockage of flow, as by a valve, in a pipe is a comm
experience and of obvious importance. Unsteady flow in a lo
pipe where the volume flow rate is measured~say with an orifice
meter!, flow in a pipe driven by a known motion of a piston, an
decaying oscillation of a liquid column in a U-tube are other e
amples. Generally the velocity profiles in these flows, at le
during the deceleration phases, are inflectional in nature and h
unstable at low Reynolds numbers. Hence the bidirectional s
tion is valid for a short time, but accurate determination of the
profiles is important in determining the stability characteristics
these flows.

2 Problem Formulation
We use the cylindrical polar coordinates (r ,u,x), where,r is

radial distance from the center of the pipe,u is the angular direc-
tion, and x is the axial direction. Velocities in ther, u and
x-direction areur , uu , andu, respectively. We consider incom
pressible bidirectional flow in an infinitely long circular pip
(radius5R) with zero swirl: uu50, ur50 and u5u(r ,t). The
condition of incompressibility implies that any pressure chang
felt instantaneously everywhere.

The governing equation of motion in thex-direction is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
17, 1998; final revision, September 15, 1999. Associate Technical Editor: D
Siginer. Discussion on the paper should be addressed to the Technical Editor
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University
Houston, Houston, TX 77204-4792, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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]x
1nS ]2u

]r 2 1
1

r

]u

]r D (1)

whereP is pressure.
The radial momentum equation in the absence of any b

force is

]P

]r
50. (2)

This implies that the pressure gradient is a function of time alo
The boundary conditions are

u~R,t !50, (3)

and

]u~0,t !

]r
50. (4)

We need an initial condition for the velocity,u(r ,0), which
depends on the problem we are considering. The solution of th
equations is possible if pressure, as a function of time, is kno
In our case, however, pressure is unknown and determined
rectly by the volume flow rate, which is given. The velocity
related to the volume flow rate by

E
0

R

2pru~r ,t !dr5up~ t !pR25Q~ t !. (5)

up is the velocity averaged over the cross section; it can be c
sidered as the velocity of a piston which would cause the flow r
Q.

With this additional condition the analytical solution of Eq.~1!
is possible using the Laplace transform technique. The Lap
transform of Eqs.~1!, ~3!, ~4!, and~5! gives

d2ū~r ,s!

dr2 1
1

r

dū~r ,s!

dr
2

s

n
ū~r ,s!5

1

m

dP̄~x,s!

dx
1

1

n
u~r ,0!

(6)

ū~R,s!50 (7)

dū

drU
r 50

50 (8)

E
0

R

2prūdr5ūp~s!pR2 (9)

whereū(r ,s)5*0
`e2stu(r ,t)dt, P̄(r ,s)5*0

`e2stP(r ,t)dt.
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Equation~6! is a second-order inhomogeneous ordinary diff
ential equation. The homogeneous part is the modified Bess
equation of zeroth order and assuming the particular integra
fp , the complete solution is

ū~r ,s!5C1I o~pr !1C2Ko~pr !1fp . (10)

Here p5As/n, I o andKo are modified Bessel’s functions of th
first and second kinds respectively;C1 andC2 are arbitrary con-
stants.

Using the boundary conditions~7! and ~8! in Eq. ~10! we de-
termine the two unknown coefficientsC1 andC2 ~for details see
Das @4#!. Substituting forC1 andC2 in Eq. ~10! we get

ū~r ,s!5fpF12
I o~pr !

I o~pR!G . (11)

To get the unknownfp we substitute the expression forū(r ,s)
~Eq. ~11!! in Eq. ~9!

2fpF E
0

R

rdr 2
1

I o~pR! E0

R

rI o~pr !drG5up~s!R2 (12)

to obtain

fp5
ūp~s!

F12
2I 1~pR!

pRIo~pR!G
. (13)

Putting the value offp in Eq. ~11! we obtain

ū~r ,s!5
pRūp~s!@ I o~pR!2I o~pr !#

@pRIo~pR!22I 1~pR!#
(14)

or

ū~r ,s!5ūp~s!•Ḡ~r ,s!, (15)

where

Ḡ~r ,s!5
pR@ I o~pR!2I o~pr !#

@pRIo~pR!22I 1~pR!#
. (16)

As p5A(s/n), we can writepr5AA(s) andpR5BA(s) where
A5r /An andB5R/An and

Ḡ~r ,s!5
@ I o~BAs!2I o~AAs!#

F I o~BAs!2
2I 1~BAs!

BAs
G (17)

The inversion of the Eq.~15! cannot be obtained using th
convolution theorem. Applying the convolution theorem to E
~15! we obtain

u~r ,t !5E
0

t

up~ t !G~r ,t2t!dt. (18)

One needs to evaluate

G~r ,t !5
1

2p i Eg2 i`

g1 i`

Ḡ~r ,s!estds. (19)

We can write the integrand in the form ofaGn11/bGn whereG is
the radius of the contour taken such that all the poles lie in the
of the contour. The integrand diverges~asG→`!, preventing the
application of the convolution theorem.

Hence we take the inverse transform of Eq.~15! and obtain

u~r ,t !5
1

2p i Eg2 i`

g1 i`

ūp~s!Ḡ~r ,s!estds. (20)

The solution of Eq.~20! can be obtained for any arbitrary pisto
motion providedup(t) is Laplace transformable.
Journal of Applied Mechanics
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3 Examples
We consider some examples of piston motion which may be

interest. We consider a trapezoidal piston motion, i.e., the pis
motion has three stages: constant acceleration of the piston s
ing from rest, a period of constant velocity, and a constant de
eration of the piston to a stop. An experimental study of the e
lution and stability of such flows has been carried out by Das@4#
and Das and Arakeri@5#. Often vortex rings are generated usin
such a trapezoidal piston motion. The flow due to linearly acc
erated piston motion, constant piston motion, and impulsiv
started flow are discussed as special cases of the trapezoidal p
motion. The solution due to a sinusoidally varying piston moti
is also discussed. A few new properties of Bessel’s functions h
been obtained which are discussed in the Appendix.

3.1 Trapezoidal Piston Motion. We obtain here the solu
tion for a piston velocity which has a trapezoidal variation w
time as given below:

up~ t ! 5
Upt

to
for 0<t<to

5Up for to<t<t1

5
Up~ t22t !

~ t22t1!
for t1<t<t2

50 for t2<t<`. (21)

For 0<t<to , taking the Laplace transform of Eq.~21! we get

ūp~s!5
Up

tos2 . (22)

From Eq.~20! we obtain

u~r ,t !5
1

2p i F2p iS residues of poles ofH Up

tos2 estḠ~r ,s!J G .
(23)

We have to determine the poles of the above expression a
can be easily shown thats50 is a pole of order 2. The residue a
s50 is

Reso5
Up

to
F2tH 12S r

RD 2J 1
R2

2n S 1

4 H 12S r

RD 4J
2

1

3 H 12S r

RD 2J D G . (24)

The other singular points are the zeroes of

I o~BAs!2
2I 1~BAs!

BAs
.

Writing BAs52 iv we find that

I o~BAs!2
2I 1~BAs!

BAs
5Jo~v !2

2

v
J1~v !5J2~v !. (25)

Hence the poles are the zeroes of the Bessel’s function of se
order. If vn , n51,2, . . . . ,̀ are zeroes ofJ2(v) then sn5

2vn
2/B2, n51,2, . . . .. ,̀ are the poles. Since allvn are sym-

metrically placed about zero on the real axis, all the poles (sn) lie
on the negative real axis. These are simple poles, and residu
all these poles can be obtained as

Resn5
2UpB2

to
e2~vn /B!2t

FJo~vn!2JoS r

R
vnD G

@vn
3J1~vn!#

. (26)

Adding Reso and Resn we obtain solution for 0<t<to and
substituting forB(5R/An)
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5

1

to
F2t~12c2!1

R2

2n S 1

4
~12c4!2

1

3
~12c2! D G

1
2R2

ton
Sn51

` e~2vn
2n/R2!tFJ0~vn!2J0~cvn!

vn
3J1~vn! G . (27)

Here c5r /R. It may be noted thatUp /to is the piston accelera
tion. Transition in a pipe flow started from rest with the line
increase in the mean velocity was studied by Lefebvre and W
@6#. In their analysis of the data they assumed that the velo
profiles given by Szymanski@1# which is the solution of laminar
pipe flow caused by a suddenly applied pressure gradient, is v

The same method is used~for details see Das@4#! to obtain the
solution during constant piston velocity phase (to<t<t1),

u

Up
52~12c2!1

2R2

nto
Sn51

` ~e~2vn
2n/R2!t2e~2vn

2n/R2!~ t2to!!

3FJ0~vn!2J0~cvn!

vn
3J1~vn! G , (28)

during the deceleration of the piston motion (t1<t<t2),

u

Up
52

t22t

t22t1
~12c2!2

R2

2n~ t22t1! S 1

4
~12c4!2

1

3
~12c2! D

1
2R2

n
Sn51

` S e~2vn
2n/R2!t2e~2vn

2n/R2!~ t2to!

to

2
e~2vn

2n/R2!~ t2t1!

t22t1
D FJ0~vn!2J0~cnn!

vn
3J1~vn! G , (29)

and after the piston has stopped, i.e.,t2<t<`,

u

Up
5

2R2

n
Sn51

` S e~2vn
2n/R2!t2e~2vn

2n/R2!~ t2to!

to

1
e~2vn

2n/R2!~ t2t2!2e~2vn
2n/R2!~ t2t1!

t22t1
D FJ0~vn!2J0~cvn!

vn
3J1~vn! G .

(30)
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From Eq.~6! we get

fp52
1

sr

dP̄

dx
. (31)

Here dP̄/dx is unknown and can be determined from Eq.~9!.
Hence using equation~31! we obtain the pressure gradient as

dP̄

dx
52

rsup~s!

F12
2I 1~pR!

pRIo~pR!G
. (32)

We obtain the expressions for the variation of nondimensio
pressure gradient with time by taking the inverse transform of
~32!. During the piston acceleration, 0<t<to ,

dP*

dx*
52

1

6

R2

nto
2

t

to
1

R2

4nto
(
n51

`

e~2vn
2n/R2!tF J0~vn!

vnJ1~vn!G ,
(33)

where P* 5P/(8mUp /R) is nondimensional pressure andx*
5x/R. During the time when the piston velocity is constant (to
<t<t1),

dP*

dx*
5211

R2

4nto
(
n51

`

~12e~vn
2n/R2!to!e~2vn

2n/R2!tF J0~vn!

vnJ1~vn!G ,
(34)

during the piston deceleration (t1<t<t2),

dP*

dx*
52

1

6

R2

n~ t22t1!
2

~ t22t !

~ t22t1!

1
R2

4n (
n51

` S e2~vn
2n/R2t !2e~2vn

2n/R2!~ t2to!

to
2

e2~vn
2n/R2!~ t2t1!

~ t22t1!
D

3F J0~vn!

vnJ1~vn!G , (35)

and after the piston has stopped (t2<t<`),
Fig. 1 The variation of pressure gradient with time for trapezoidal piston motion
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dP*

dx*
5

R2

4n (
n51

` S e~2vn
2n/R2!t2e~2vn

2n/R2!~ t2to!

to

1
e~2vn

2n/R2!~ t2t2!2e~2vn
2n/R2!~ t2t1!

t22t1
D F J0~vn!

vnJ1~vn!G .
(36)

The infinite series in Eqs.~27! to ~30! are convergent andn
550 is enough for the cases we are considering. The solu
depends onto , t1 , and t2 . Velocity profiles calculated for trap
ezoidal piston motion are plotted in Fig. 2 for different nondime
sional times (t* 5tn/R2) with ton/R2, t1n/R2 and t2n/R2

50.0012, 0.0305, and 0.0366, respectively. Figure 1 shows
nondimensional pressure gradient with time. During the accel
tion and deceleration phases the pressure gradients are
mainly because of fluid inertia. After the piston stops the press
gradient slowly decays to zero. The centerline velocity chan
with the piston velocity during the acceleration phase and bou
ary layer near the wall starts growing~see Fig. 2~a!!. In Fig. 2~b!
velocity profiles are shown when the piston moves at cons
velocity. Diffusion of vorticity causes the boundary layer to gro
with time and the center line velocity increases to satisfy the m
flow condition. During the time period when the piston decel
ates and stops at timet2 , an adverse pressure gradient causes
Journal of Applied Mechanics
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flow to reverse its direction near the wall. This can be seen in F
2~c!. It is observed that the reverse flow first appears near wall
starts moving towards the centerline. After the piston mot
ceases, the velocity profile~Fig. 2~d!! continues to have revers
flow near the wall to satisfy the zero mass flow condition. W
time the velocity decays to zero everywhere. Velocity profi
beyondt1 contain an inflection point and have reverse flow. T
solution is clearly valid only as long as the flow is laminar, i.
until instability sets in.

When the piston moves at a constant speed after initial ac
eration we obtain the solution from~28!. We observe that at infi-
nite time the velocity is the Hagen-Poiseuille solution. Simila
the solution for the pressure shows that the pressure gradien5
28nUp /R2) for the Hagen-Poiseuille solution is obtained as tim
tends to infinity.

3.2 Constant Acceleration Case. For a piston with con-
stant acceleration (5ap ;up5apt) the solution is obtained from
Eq. ~27! by putting to5t,

u~r ,t !

up
52$12c2%1

R2

2nt S 1

4
$12c4%2

1

3
$12c2% D 1

2R2

tn

3(
n51

`

e~2vn
2n/R2!tFJ0~vn!2J0~cvn!

vn
3J1~vn! G . (37)
Fig. 2 Velocity profiles at different times „a… during the acceleration of the piston motion „profiles are
shown at time intervals of t o* Õ6…, „b… when the piston velocity is constant „profiles are at time intervals of
„t 1*Àt o* …Õ6…, „c… during the deceleration of the piston velocity „profiles are at time intervals of „t 2*
Àt 1* …Õ4…, and „d… after the piston motion has stopped „profiles are at time intervals of „0.0427Àt 2* …Õ6…
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Figure 3 shows the velocity profiles at different times.
Here the solution for pressure gradient as time tends to infi

is

dP*

dx*
5212

1

6

apR2

nup
. (38)

The first terms in~37! and ~38! corresponding to the Hagen
Poiseuille solution~corresponding to zero piston acceleration! and
the second terms are due to the piston acceleration.

3.3 Impulsively Started Flow. The solution of an impul-
sively started flow in a pipe,

up50, for t<0

5Up , for t.0, (39)

is given by

Fig. 3 Velocity profiles at different nondimensional times for
constant acceleration of the piston motion
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Up
52~12c2!22(

n51

`

e~2vn
2n/R2!tFJ0~vn!2J0~cvn!

vnJ1~vn! G . (40)

Figure 4~a! shows the velocity profiles at different times. T
corresponding pressure gradient, plotted in Fig. 4~b!, is

dP*

dx*
5212

1

4 (
n51

`

e~2vn
2n/R2!tF ~vnJ0~vn!!

J1~vn! G . (41)

At t50 an infinite pressure gradient is required to counter
infinite wall shear stress.

Note that the velocity profile looks different from those cor
sponding to an impulsively applied pressure gradient. Also in
present case the solution tends to the final asymptotic sta
nt/R2.0.2 compared to the Szymanski@1# solution value of
nt/R2.0.8.

3.4 Impulsively Blocked Fully Developed Flow. The exact
solution of the problem considered by Weinbaum and Parke@3#
is

u

Up
522(

n51

`

e~2vn
2n/R2!tFJ0~vn!2J0~cvn!

vnJ1~vn! G . (42)

The initial condition for this problem isu(r ,0)512c2, and the
mass flow condition is*0

R2prudr50.

3.5 Oscillatory Flow. The asymptotic solution for flow in a
pipe or in a two-dimensional channel due to a sinusoidally os
lating piston is known~see Uchida@2# and Wembersley@7#!. The
solution is obtained by using the fact that the pressure grad
also oscillates sinusoidally. We consider the case of oscilla
piston motion starting from rest, i.e.,up50 for t,0 and up
5Uo sin(vt) for t.0. The poles are simple poles ats5 iv and
s52 iv, and are the zeroes ofJ2(v). The solution is
Fig. 4 Velocity profiles „a… and pressure gradient „b… for impulsively started motion
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Fig. 5 Comparison of the present solution „solid line … for the unidirectional oscillatory
flow starting from rest with the experimental data of Akhavan et al. †8‡ „symbols …
n

e of

h
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e
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ns
u5
iU o

2
ept~G~r ,2 iv!2G~r ,iv!!

12UoB2v(
n51

`
vn

~vn
41v2B4!

e~2vn
2/B2!tFJ0~vn!2J0~cvn!

J1~vn! G
(43)

where

G5
I o~Biv!2I o~Aiv!

I o~Biv!2
2I 1~Biv!

Biv

.

Substituting the residues we obtain the final expression for
locity as

u

Uo
5

i

2 FJ0~va!2J0~cva!

J2~va!
eivt2

J0~vb!2J0~cvb!

J2~vb!
e2 ivtG

1Sn51
` e~2vn

2n/R2!t
R2nv

vn
4n21R4v2 F2vn~J0~vn!2J0~cvn!!

J1~vn! G .
(44)

Here, iva5RAiv/n and ivb5RA2 iv/n.
Using Eq.~31! we obtain the pressure gradient as

dP̄

dx
52

rsUov

s21v2

I o~BA~s!!

F12
2I 1~BA~s!!

BA~s!I o~BA~s!!
G . (45)

We obtain the expressions for the variation of pressure grad
with time by taking the inverse transform of Eq.~45!
Mechanics
ve-

ient

dP*

dx*
5

ivR2

16n FJ0~va!

J2~va!
eivt2

J0~vb!

J2~vb!
e2 ivtG

1
1

8
Sn51

` e~2vn
2n/R2!t

R2nv

vn
4n21R4v2 F2vnJ0~vn!

J1~vn! G . (46)

This solution is applicable from starting of the piston motio
and reaches the conventional oscillating pipe flow solution~simi-
lar to the solution of Uchida@2# and Wembersley@7#! after few
cycles of acceleration and deceleration depending on the valu
the Wembersely parameter~ratio of pipe diameter~R! and Stokes
layer thickness,dst5A2n/v!. Thus the solution obtained throug
the present method will have more applicability compared to
existing solutions of fully developed oscillating pipe flow. Th
solution is compared with the experimental results of Akhavan@8#
in Fig. 5. Figure 6 shows velocity profiles at different phases
two cycles of oscillation starting from rest att50. Note the
changes in shape of the velocity profiles at a particularvt in the
first two cycles of oscillation.

4 Channel Flow
In case of flow in a two-dimensional channel similar equatio

are solved and the solutions for a trapezoidal piston motion~as
given by Eq.~21!! at different times are
for 0<t<to

u

Up
5

1

to
S 3t

2
~12ch

2!2
h2

40n
~5ch

426ch
211! D

2
2h2

nto
Snh51

` e2vnh
2 nt/h2Fcos~chvnh!2cos~vnh!

vnh
3 sin~vnh!

G , (47)

for to<t<t1
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Fig. 6 Velocity profiles at different phases for two cycles, for oscillating pipe flow starting
from rest at tÄ0 „RÕA2nÕvÄ10…
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Up
5

3

2
~12ch

2!2
2h2

nto
Snh51

` ~e~2vnh
2 n/h2!t~2e2vnh

2 n/h2
!~ t2to!!

3Fcos~chvnh!2cos~vnh!

vnh
3 sin~vnh!

G , (48)

for t1<t<t2

u

Up
5

3

2
~12ch

2!S t22t

t22t1
D1

1

t22t1

h2

40n
~5ch

426ch
211!

2
2h2

n
Snh51

` S e~2vnh
2 n/h2!t2e~2vnh

2 n/h2!~ t2to!

to

2
e~2vnh

2 n/h2!~ t2t1!

t22t1
D Fcos~chvnh!2cos~vnh!

vnh
3 sin~vnh!

G , (49)

and for t2<t<`

u

Up
52

2h2

n
Snh51

` S e~2vnh
2 n/h2!t2e~2vnh

2 n/h2!~ t2to!

to

1
e~2vnh

2 n/h2!~ t2t2!2e~2vnh
2 n/h2!~ t2t1!

t22t1
D

3Fcos~chvnh!2cos~vnh!

vnh
3 sin~vnh!

G (50)

where subscripth indicates the quantities for channel.h is channel
half height,y is the distance from the centerline towards the w
of the channel,c5y/h, and vnh , nh51,2 . . . . . . . . .̀ , are
roots of tan(v)50. The solution for the problem impulsivel
blocked fully developed channel flow, considered by Weinba
and Parker@3#, is

u

Up
52Sn51

` e~2vn
2n/h2!tFcos~chvnh!2cos~vnh!

vnh sin~vnh!
G . (51)
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5 Conclusions
We have obtained analytical solutions for unsteady bidir

tional flows when the volume flow rate is given as a function
time. These solutions are applicable in those cases where the
ume flow rate is known as a function of time either by measu
ment or by when the flow is driven, for example, by the controll
motion of a piston. Solution procedure is given for arbitrary pist
motions. Different examples are considered.

Appendix

Some Properties of Zeros of Bessel’s Function of Secon
Kind and Zeros of tan„v…. From the solutions of Eqs.~1! to ~5!
for the trapezoidal piston motion it is possible to obtain so
properties of the zeros of Bessel’s function of second kind.
match the solutions obtained from~27! and ~28! at t5to . This
matching leads to the relation

Sn51
` FJ0~cvn!2J0~vn!

vn
3J1~vn! G5

1

12
~12c2!2

1

16
~12c4!. (A1)

Here, vn , n51,2, . . . .. ,̀ are the zeros of Bessel’s function o
the second kind andc is the nondimensional distance from th
center of the pipe. Matching of solutions obtained from~28! and
~29! at t5t1 and from ~29! and ~30! at t5t2 leads to the same
relation as shown in Eq.~A1!.

It is possible to obtain other relations from derivatives of re
tion ~A1! with respect toc.

For c50 the relation~A1! becomes

Sn51
` FJ0~vn!21

vn
3J1~vn! G5

1

48
. (A2)

Similarly the matching of solutions~47! and~48! at t5t0 leads
to the relation,
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5Snh51

` Fcos~vnh!2cos~chvnh!

vnh
3 sin~vnh!

G . (A3)

For ch50 the relation~A3! becomes

Snh51
` Fcos~vnh!21

vnh
3 sin~vnh!

G5
1

80
. (A4)
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Transient Response of an Infinite
Elastic Medium Containing a
Spherical Cavity Subjected to
Torsion
An exact closed-form solution is obtained for the transient response of an infinite is
pic elastic medium containing a spherical cavity subjected to torsional surface loa
using the residual variable method. The main advantage of the present approach is
eliminates the computational problems arising in the existing methods which are pr
rily based on Fourier or Laplace transformation techniques. Extensive numerical re
for the circumferential displacements and shear stresses at various locations are
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1 Introduction
The analysis of wave propagation in infinite elastic media c

taining cavities has been the topic of numerous studies in
fields of acoustics, geophysics, and seismology. In general,
bedded spherical cavities subjected to specified loads gen
both dilatational and transverse waves. Extensive reviews of s
situations have been given by Achenbach@1#, Eringen and Suhub
@2#, Miklowitz @3#, and Gaunaurd@4#.

In this paper, we investigate the transient response of an
nite, elastic, isotropic medium resulting from the application
torsional tractions on the surface of an embedded spherical ca

Using Fourier transform techniques, Sato et al.@5# and Eringen
and Suhubi@2# found the response of an elastic sphere subjec
to a ring load and recently Godin@6# analyzed a spherical crac
problem in an infinite medium under static torsional stress
Chadwick and Trowbridge@7,8# have given detailed studies o
both the torsional and the rectilinear oscillations of a rigid sph
embedded in an infinite elastic solid. They also presented~@9#! a
formal solution of the elastic pulses generated within an infin
body by the application of time-dependent tractions to the surf
of a spherical cavity, as an application of the three scalar w
functions representation which they use. The detailed structur
the developing ‘‘poloidal’’ and ‘‘toroidal’’ constituents of the
wavefronts was analyzed by Tupholme@10# with the solutions for
situations in which the spherical surface is loaded in torsion giv
Tupholme@10# showed that a purely toroidal pulse can be gen
ated by a torsional loading, and that its structure bears a c
similarity to the acoustic pulses which he describes elsewh
~@11#!. More generally, by quite different methods, Chadwick a
Johnson@12# discussed the torsional oscillations of axisymmet
rigid convex inclusions embedded in an infinite elastic solid us
‘‘ray theory.’’ The cases of oblate and prolate spheroidal~and in
particular spherical! inclusions are considered in detail.

Here the residual variable method, which is based on modi
wave equations, is used to obtain exact closed-form solut
which are more amenable to numerical evaluation. The resid
variable method has been used previously by Geers@13#, Akkas
@14,15#, Akkas and Zakout@16#, and Zakout and Akkas@17# to

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, N
vember 20, 1998; final revision, December 7, 1999. Associate Technical Edito
K. Mal. Discussion on the paper should be addressed to the Technical Editor,
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University
Houston, Houston, TX 77204-4792, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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solve various problems in acoustic and elastic media. The s
tions are valid for any time and location inside the medium. N
merical results are presented for the modal responses of the s
stresses and circumferential displacements in the case of m
Heaviside stresses acting on the surface of the cavity.

2 Formulation
Consider an infinite homogeneous isotropic elastic medi

containing a spherical cavity of radiusa as shown in Fig. 1. The
spherical coordinates are (r ,u,w), wherer is the nondimensiona
radial coordinate related to the dimensional radial coordinatr̄
through r 5 r̄ /a and u and w are meridional and circumferentia
angles, respectively. Letf(r ,u,t), x(r ,u,t), andc(r ,u,t) be the
displacement potentials for the elastic medium. The spher
components of the displacement vector areur , uu , and uw and
those of the stress tensor ares rr , s ru , s rw , suu , sww , andsuw .
The nondimensional timet is related to the dimensional tim
through t5 t̄ c1 /a, c1 being the dilatational wave speed in th
medium. If the only shear stress component acting on the sur
of the cavity iss rw ands rw is independent ofw, then no dilata-
tional waves are generated. In this case, we also haveur5uu
50, f5x50, ands rr 5suu5sww5s ru50. Expanding the non-
zero displacement potentialc(r ,u,t) in terms of Legendre poly-
nomials asc(r ,u,t)5Sn50

` cn(r ,t)Pn(cosu), the nonvanishing
displacement componentuw and the stress componentss rw and
suw can be expressed as

uw5(
n51

`

uw
~n!

dPn~cosu!

du
5(

n51

`

cn

dPn~cosu!

du
, (1)

s rw5
m

a (
n51

`

s rw
~n!

dPn~cosu!

du

5
m

a (
n51

`
1

r S cn2r
]cn

]r D dPn~cosu!

du
, (2)

suw5
m

a (
n51

`
cn

r S d2Pn~cosu!

d~cosu!2 2
dPn~cosu!

d~cosu! D cosu. (3)

The modal displacement potentialscn must satisfy a transvers
wave equation for each moden of the complete solution of the
form

]2cn

]r 2 1
2

r

]cn

]r
2

n~n11!

r 2 cn5a2
]2cn

]t2 , (4)
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wherea5c1 /c2 and c2 is the transverse wave speed. An app
cation of the residual variable method reduces by one the orde
the derivative with respect tor in Eq. ~4!. The method is summa
rized below for the sake of self-sufficiency. Taking the Lapla
transform of Eq.~4! we obtain the following modal equation i
the Laplace domain:

r 2
d2c̃n

2

dr2 12r
dc̃n

dr
1@ i 2a2r 2s22n~n11!#c̃n50, (5)

in which i 5A21, s is the Laplace parameter, and; denotes
quantities in the Laplace domain. Forc̃n to be finite at infinity the
solution must be the spherical Bessel function of the third k
hn

(1)(z) ~@18#!. Thus

c̃n5hn
~1!~z!5

1

z
i 2n21eiz(

k50

n

Gk
nS i

zD
k

, (6)

wherez5 iars and

Gk
n5

~n1k!!

2kk! ~n2k!!
. (7)

An integration constant is not included in Eq.~6! since it is found
to be irrelevant. We note that

dc̃n

dr
5

dhn
~1!~z!

dz

dz

dr
5 ias

dhn
~1!~z!

dz

c̃n

hn
~1! . (8)

The series expansions ofhn
(1)(z) and its derivative with respect to

z can now be substituted into Eq.~8! to yield the modal equation
in the modified form

r
dc̃n

dr
1arsc̃n1c̃n52c̃Rn (9)

in which the residual variablec̃Rn is given by

c̃Rn5F (
k50

n

kGk
n~ars!n2k

(
k50

n

Gk
n~ars!n2k G c̃n . (10)

Inversion of Eq.~9! into the time domain gives

r
]cn

]r
1ar

]cn

]t
1~n11!cn5 f nS t

ar D * ]
cn

]t
, (11)

with f 0(t)50, f n(t)5Sk51
n exp(ankt), whereank for k51, . . . ,n

are then complex roots ofSk50
n Gk

nSn2k50 given by Akkas@15#
and* denotes convolution. The solutions forcn must satisfy the
wave Eq.~4!, or its modified form~11!, and the boundary condi

Fig. 1 Geometry of the problem
Journal of Applied Mechanics
li-
r of

ce

nd

tions fors rw
(n) defined on the surface of the spherical cavity. In t

Laplace domain, the solution is obtained from Eq.~9! as

c̃n5Cn
3~s!

e2ars

r n11 (
k50

n

Gk
n~ars!n2k, (12)

whereCn
3(s) is an integration constant to be determined from t

boundary condition atr 51. Obviously, Eq.~12! is equivalent to
Eq. ~6! as it should be. Accordingly, Eqs.~9! and ~11! are the
equivalent forms of Eqs.~5! and ~4!, respectively. This is where
the basis of the residual variable method lies; in modifying
classical equations. For our problem,

Cn
3~s!5

a

m

s̃ rw
~n!~r 51!eas

(
k50

n

~21k1as!Gk
n~as!n2k

. (13)

3 Solution for a Heaviside Load Function
Consider the case in which the cavity surface is subjected

circumferential step load that can be expanded in a modal se
as

w rw~r 51,u,t !5(
n51

`

s~n!
dPn~cosu!

du
H@ t#, (14)

in which s (n) are constants andH@ t# is the Heaviside function.
Having derived the results for this special loading, the results
a more general loading follow by convolution. For the case~14!
the solution becomes

cn5
as~n!

mr n11 (
k50

n11 F (
m50

n

am~arsk!
n2m

(
m50

n11

~n2m12!cm~ask!
n2m11G

3esk@ t2a~r 21!#H@ t2a~r 21!#, (15)

]cn

]r
52

as~n!

mr n12 (
k50

n11 F (
m50

n11

bm~arsk!
n2m11

(
m50

n11

~n2m12!cm~ask!
n2m11G

3esk@ t2a~r 21!#H@ t2a~r 21!#, (16)

wheream , bm , andcm are given by

am5Gm
n , (17)

bm5mGm2 l
n 1Gm

n for m<n and bm5mGm21
n for m5n11,

(18)

c05G0
n , cm5~m11!Gm21

n 1Gm
n for 1<m<n

and cm5~m11!Gm21
n for m5n11, (19)

andask for k50, . . . ,n11 are the roots of

(
m50

n11

cm~ask!
n2m1250. (20)

With s050, these roots,ask , for k51, . . . ,n11, are presented
for modesn52 to 9 in Table 1.

The formulas for the modes 1 and 2 are now given explicitly
illustration. Whenn51 the solution~15! and ~16! gives

c15
as~1!

mr 2 (
k50

2
arsk11

3a2sk
216ask13

esk@ t2a~r 21!#H@ t2a~r 21!#,

(21)
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]c1

]r
52

as~1!

mr 3 (
k50

2
a2r 2sk

212arsk12

3a2sk
216ask13

3esk@ t2a~r 21!#H@ t2a~r 21!#, (22)

wheres050, as152(32 i))/2 andas252(31 i))/2, which
can be rewritten as

c15
as~1!

mr 2 H 1

3
1

1

75
e23t* /2aF4~r 26!cosS)t*

2a D
18~9r 24!sinS)t*

2a D G J H@ t* #, (23)

]c1

]r
52

as~1!

mr 3 F1

3
1

2

75
e23t* /2a~33r 214r 224!cosS)t*

2a D
2

16

75
e23t* /2a~7r 229r 14!sinS)t*

2a D GH@ t* #, (24)

wheret* 5t2a(r 21). Similarly, whenn52,

c25
as~2!

mr 3 (
k50

3
a2r 2sk

213arsk13

4a3sk
3115a2sk

2124ask112

3esk@ t2a~r 21!#H@ t2a~r 21!#, (25)

]c2

]r
52

as~2!

mr 4 (
k50

3
a3r 3sk

314a2r 2sk
219arsk19

4a3sk
3115a2sk

2124ask112

3esk@ t2a~r 21!#H@ t2a~r 21!#, (26)

where s050, as1522, as252(32 iA15)/2 and as352(3
1 iA15)/2, yielding

Table 1 The roots as k „kÄ1, . . . ,n¿1… for modes nÄ2 to 9

n52 22.0 n53 21.54923962.930104i

21.561.936492i 22.45076060.906011i

n54 23.159404 n55 21.65298364.875444i

21.60201263.905351i 23.71914160.8844119i

22.81828561.802312i 23.12787562.701174i

n56 24.428261 n57 21.74689966.813909i

21.70127365.844471i 23.63584064.514667i

23.39684463.605214i 25.02286660.876611i

24.18775161.766199i 24.59439562.651149i

n58 25.724764 n59 21.83106968.755852i

21.79007967.784305i 24.04927666.348237i

23.85175965.429182i 26.33679560.873589i

25.53998161.753160i 26.00027262.631762i

24.95579763.540231i 25.28258764.433846i
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c25
as~2!

mr 3 F1

8
e23t* /2a~4r 226r 11!cosSA15t*

2a D
1

A15

40
e23t* /2a~4r 212r 23!sinSA15t*

2a D 1
1

4

2
1

8
e22t* /a~4r 226r 13!GH@ t* #, (27)

]c2

]r
52

as~2!

mr 4 F3

4
1

1

8
e22t* /a~8r 3216r 2118r 29!

1
1

8
e23t* /2a~16r 2218r 13!cosSA15t*

2a D
2

A15

40
e23t* /2a~16r 3216r 226r 19!sinSA15t*

2a D GH@ t* #.

(28)

4 Results and Conclusion
The results presented in this section are calculated from

exact, analytical expressions obtained in the previous section
a modal Heaviside loadings rw

(n)(r 51,t)5s (n)H@ t# applied on the
cavity surface. The realistic data used are for granite rock w
r52660 kg/m3, l58.4443109 N/m2, m51.266731010 N/m2,
c153563 m/s,c252182 m/s.

The nondimensional modal stress componentss rw
(n)/s (n) as

functions of the nondimensional time are presented in Figs. 2
and 4 for modes 1, 2, and 3, respectively, at the locationr
51.0, 1.05, 1.1, 1.2, 1.5, 2.0, and 4.0. The results are available
other modes also, but are not presented here. It can be seen
the shear response initially jumps at the arrival of the transve
waves whent5(r 21)a. The initial jump at each point in the
medium corresponds to the peak value of the response histo
that point and is followed by a damped response which tends
static value at later times.

Figures 5 and 6 show the stress responses atr 51.1 and r
51.2, respectively, for modesn51 to 14. It is clear that the
response histories are characterized by higher frequencies
damping to the static values for the higher modes. Also the st
values are lower for the higher modes.

The nondimensional circumferential modal displacem
muw

(n)/as (n) for mode 1 is presented in Fig. 7 for a range of poin
in the medium. Figure 8 shows the modal circumferential d
placements at the surface of the cavity for modesn51 to 14. For

Fig. 2 Circumferential stresses for nÄ1 at various values of r
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each mode the displacement initially increases to its peak v
followed by a damped oscillation to its static value. Howev
higher modes are associated with higher frequencies and la
damping and, moreover, the subsequent static values are sm
in magnitude.

Fig. 3 Circumferential stresses for nÄ2 at various values of r

Fig. 4 Circumferential stresses for nÄ3 at various values of r

Fig. 5 Circumferential stresses for nÄ1 to 14 at rÄ1.1
Journal of Applied Mechanics
lue
r,
rger
aller

The stress responses as functions of the nondimensional ra
distance,r, are depicted in Fig. 9 for mode 1 at the nondime
sional timest51,2, . . .,10. They are characterized by concav
curves which initially gradually decrease with distance from th
maximum values at the cavity surfacer 51. Having reached their

Fig. 6 Circumferential stresses for nÄ1 to 14 at rÄ1.2

Fig. 7 Circumferential displacements for nÄ1 at various val-
ues of r

Fig. 8 Circumferential displacements for nÄ1 to 14 at rÄ1.0
JUNE 2000, Vol. 67 Õ 285
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minima, they increase subsequently. The end of each curve c
cides with the most distant point which can be reached by
stress wave within the medium at that particular time.

It is also interesting to analyze the response of the medium
surface ‘‘ring loads,’’ using the orthogonality properties of th
Legendre polynomials and modal superposition. The results
two representative loading situations are presented here. The
face of the spherical cavity is subjected to a torsional stress
applied first, in Case 1, atp/3<u<2p/3, and secondly, in Case
2, at p/3<u<7p/18. Figures 10, 11, 12, and 13 illustrate th
values of the torsional stress responses,s rf /s, in the medium
obtained by superposing the modes 1–12 compared with th
using modes 1–14.

Figures 10 and 11 show the stress response as a function o
nondimensional timet in Case 1 withr 51.1, 1.2, and 1.5 atu
5p/2 andu5p/4, respectively. The curves in Fig. 10 are seen
initially increase to their peaks, which are achieved upon the
rival of the stress wave, and to be then gradually damped to t
static values. The corresponding curves in Fig. 11 for the stres
u5p/4 exhibit sudden jumps followed by oscillatory damping
static values. The analogous responses for Case 2 atr 51.2 and
1.5 are presented in Figs. 12 and 13. Initial jumps are shown to
followed by damped oscillations.

Fig. 9 Circumferential stresses for nÄ1 at various values of t

Fig. 10 Torsional stresses for nÄ1 to 12 and nÄ1 to 14 in
Load Case 1 at rÄ1.1, 1.2 and 1.5 with uÄpÕ2
286 Õ Vol. 67, JUNE 2000
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Fig. 11 Torsional stresses for nÄ1 to 12 and nÄ1 to 14 in
Load Case 1 at rÄ1.1, 1.2 and 1.5 with uÄpÕ4

Fig. 12 Torsional stresses for nÄ1 to 12 and nÄ1 to 14 in
Load Case 2 at rÄ1.2 and 1.5 with uÄpÕ2

Fig. 13 Torsional stresses for nÄ1 to 12 and nÄ1 to 14 in
Load Case 2 at rÄ1.2 and 1.5 with uÄpÕ4
Transactions of the ASME
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It is apparent from the results for modes 1–12 as oppose
modes 1–14 in Figs. 10–13 that the convergence of the solutio
a particular point in the medium depends not only on its locat
but also upon the area of the cavity surface over which the loa
applied. Generally, better convergence is achieved at points m
distant from the cavity surface. The narrower the area over wh
the surface load is applied, the more modes are required to
prove the convergence of the solution.

In conclusion, it can be summarized that here the residual v
able method is employed to eliminate the second derivative of
displacement potential with respect to the radial coordinate fr
the wave equation. Integration of the resulting differential eq
tion in the Laplace domain yields the displacement potential w
an integration constant which is determined from the bound
condition. An exact closed-form expression for the potentia
obtained which leads to explicit modal relations for the displa
ment and the stress components representing the dynami
sponse of the medium at any position and time. Numerical res
are presented in graphical form for circumferential Heavis
loads acting on the surface of a spherical cavity within gran
rock.
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Yield Functions and Flow Rules
for Porous Pressure-Dependent
Strain-Hardening Polymeric
Materials
To characterize the response of progressively damaged glassy polymers due to the
ence and evolution of voids, yield functions and flow rules were developed systema
for a pressure-dependent matrix following the modified von Mises criterion. A ri
perfectly plastic material was first assumed. The upper bound method was used w
velocity field which has volume preserving and shape changing portions. Macros
yield criterion in analytical closed form was first obtained for spherical voids which
valid for all possible macroscopic strain rate fields. Macroscopic yield criteria in an
lytical closed form were then obtained for cylindrical voids for the special case
axisymmetric and plane-strain modes of deformation. The upper-bound solutions
subsequently improved to better match analytical solutions for pure hydrostatic loa
Characteristics of the yield function as a function of pressure dependency and void
tion were studied in detail. Generalization of the model for spherical voids to incl
elasticity as well as strain hardening of the matrix was then obtained. An example fo
uniaxial response of a progressively damaged material was then used to illustrate
possible application of the full set of constitutive equations.@S0021-8936~00!02902-0#
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1 Introduction
One important mechanism of failure for glassy polymers is

nucleation, growth, and coalescence of voids leading to craz
crack propagation, and subsequent failure~@1–3#!. Similar mecha-
nisms leading to ductile failure for metals have been widely st
ied ~@4#! which was greatly facilitated by the development of t
so-called Gurson’s model~@5#!. Gurson’s model represents th
plastic behavior of void-containing metals using a~porous! yield
function and related flow rules. Material properties of glassy po
mers are, however, very much different from those of metals.
example, unlike metals which are generally pressure independ
polymers are influenced much more by the hydrostatic pres
~@6#!. The pressure dependency of yielding gives rise to differ
yield strengths in compression from tension, and is known as
SD ~strength-differential! effect. In addition, polymers are mor
rate sensitive than metals and have different hardening-softe
responses from metals. As a first step toward understanding
failure behavior of glassy polymers, it is the objective of th
paper to develop~porous! yield criteria and related flow rules fo
void-containing polymers with a pressure-dependent matrix wh
follows the modified von Mises criterion~@7#!. We focus specifi-
cally on the growth stage of the failure process. During the gro
of voids for polymeric materials, the shape is generally sphe
dal. Spherical voids represent one special case of the spher
voids whereas cylindrical ones represent another limit. Analyt
yield criteria for spherical and cylindrical voids were obtain
systematically using the upper bound approach~@8#! for rigid-
perfectly plastic materials, which were subsequently improv
such that they show an excellent match with analytical soluti
of voids under pure hydrostatic pressure. Flow rules, incorpo

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
15, 1998; final revision, June 22, 1999. Associate Technical Editor: A. K. M
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ing strain hardening, were then developed for spherical vo
Lower case Greek letters indicate microscopic~matrix! properties
whereas upper case Greek letters indicate macroscopic~aggre-
gate! properties. Einstein summation convention is assumed. M
of the analytical and numerical calculations were greatly sim
fied by using Mathematica~@9#!. More details of this work can be
found in Oung@10#.

2 Constitutive Equations and Upper Bound Theorem
The modified von Mises yield criterion has been found app

cable for many glassy polymers~for example,@11,7,12#!. The
classical upper bound theorem~@8#! has been extended fo
pressure-dependent materials for soils~@13#! and polymers~@14#!.

Modified von Mises Criterion. The modified von Mises cri-
terion can be expressed as

F5s̄22CT1~C2T!skk50, (1)

where s̄5A(3/2)s i j8 s i j8 is the equivalent stress.s i j8 is the stress
deviator. skk5d i j s i j is the hydrostatic stress whered i j is the
Kronecker delta.C andT are the absolute yield strengths in com
pression and tension, respectively. We will assume the assoc
flow rule such that the plastic strain rates (ė i j ) are

ė i j 5l
]F

]s i j
, (2)

wherel is a proportional parameter which can be found~using
Eqs.~1! and ~2!! as

l5
eG

2s̄
, (3)

where eG 5A(2/3)ė i j8 ė i j8 is the equivalent plastic strain rate.ė i j
51/2(v i , j1v j ,i) wherev i is the velocity. Substituting Eq.~3! into
Eq. ~2! and using Eq.~1! we have

ė i j8 5
3eG

2s̄
s i j8 , (4)
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ėkk5
3

2

eG

s̄
~C2T!. (5)

Anticipating applying the upper bound theorem, we expr
stresses in terms of strain rates by rearranging Eq.~5!, such that

s̄5
3

2

eG

ėkk
~C2T!. (6)

In addition, combining Eqs.~1! and ~6! we have

skk5
CT

C2T
2

9

4

eG 2

ėkk
2 ~C2T!. (7)

Using Eqs.~6! and~7!, the internal plastic work density rate i

ẇ5s i j ė i j 5
3

4

eG 2

ėkk
~C2T!1

CT

3~C2T!
ėkk . (8)

Upper Bound Theorem. The upper bound theorem for find
ing porous yield criteria has been discussed by Gurson@5#. The
desirable velocity field is found by the minimization of the rate
plastic work done,

Ẇ5
1

V E
V
s i j ė i j dV, (9)

whereV is the volume of a unit cell. The macroscopic stress
related to the microscopic stress and strain rate via

S i j 5
]Ẇ

]Ėi j

5
1

V E
V
skl

]ėkl

]Ėi j

dV, (10)

where ( i j and Ėi j are macroscopic stresses and~plastic! strain
rates, respectively. It should be noted that normality of the ma
is invoked in deriving Eq.~10! such that there is a single term i
the integral which simplifies the relationship. When a rigid plas
state is assumed, the microscopic velocity field at the surface~S!
of the unit cell is connected to the macroscopic plastic strain
in Cartesian coordinates as

v i uS5ĖikxkuS . (11)

3 The Rigid-Plastic Porous Model for Spherical Voids
For spherical voids, the unit cell is a spherical shell of inn

radiusa and outer radiusb. The assumed velocity field is obtaine
following the examples of Lee@14# and Gurson@5#. Although
various velocity fields can be constructed, we will seek o
simpleones that would lead toanalyticalyield functions. The aim
is relating the microscopic velocity field to the macroscopic qu
tities. For spherical voids, the velocity field can be convenien
separated into two parts,

v i5v i
s1v i

v , (12)

wherev i
s involves shape changes at constant volume andv i

v in-
volves volume changes at constant shape. We will first const
v i

v . Using spherical coordinates~0<u<p, 0<f<2p!, vu
v5vf

v

50. Matrix compressibility indicates

2
v r

v

r
1

]v r
v

]r
5 ėkk[a0 (13)

wherea0 represents the volumetric strain rate. The simplest
locity field is obtained~cf. @14#! by assuminga0 as constant.
Using Eqs.~13! and ~11!, the volumetric velocity field becomes

v r
v5

1

3
~Ėkk2a0!

b3

r 2 1a0

r

3
. (14)

When pressure dependency is not involved (a050), the above
equation reduces to that of Gurson’s~@5#!. The deviatoric velocity
field of Gurson is used here,
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v i
s5Ėi j8 xj , (15)

in Cartesian coordinates. Combining Eqs.~14! and~15!, the strain
rate field becomes

ė i j 5 ė i j
s 1 ė i j

v 5Ėi j8 1
1

3
~Ėkk2a0!hi j 1

1

3
a0d i j , (16)

wherehrr 522(b/r )3522huu522hff , hi j u iÞ j50. hi j will be
transformed into the Cartesian coordinates for subsequent ca
lations such that all terms in Eq.~16! refer to the same axes. Th
integration of any volume-averaged quantity^& takes the following
form:

1

V E
r 5a

r 5bE
u50

u5pE
f50

f52p

^ &r 2 sinudrdudf, (17)

where V5(4/3)pb3, and the void fractionf by definition is
(a/b)3. The yet undetermineda0 is found by minimizingẆ ~us-
ing Eqs.~8!, ~9!, and~16!! with respect toa0 ,

]Ẇ

]a0
50, (18)

solving for a0 and taking the positive root~for associated plastic-
ity, a0 is always positive!, a0 becomes

a05S ~C2T!2S Ėkk
2 1

9

4
f EG 2D

~C2T!21 f CT
D 1/2

, (19)

where EG 85( 2
3Ėi j8 Ėi j8 )1/2 is the macroscopic equivalent plast

strain rate andĖkk5d i j Ėi j is the macroscopic volumetric plasti
strain rate.

Using Eqs.~10!, ~16!, and ~18!, the macroscopic stresses a
related to the microscopic stresses as

( i j8 5
1

V E
V
s i j8 dV, (nn5

1

V E
V
skl8 hkldV, (20)

which are identical to Eq.~4.7! of Gurson@5#. This identity is a
consequence of Eq.~18!. In other words, as long as the minim
zation process is carried out, Eq.~20! is valid for the pressure-
independent as well as the pressure-dependent matrices.

Yield Criterion. Using Eqs.~4!, ~6!, ~16!, and ~20!, we find
the following macroscopic stress invariants:

Seq5S 3

2
S i j8 S i j8 D 1/2

5
3EG ~12 f !~C2T!

2a0
, (21)

Snn5
2~12 f !~C2T!~Ėkk2a0!

a0f
. (22)

To find the yield criterion,a0 from Eq. ~19! is substituted into
Eqs.~21! and~22!. Seq andSnn can be expressed as a function
(Ėkk /EG ) which can be eliminated. We then find the surprising
simple yield criterion as

F5Seq
2 1

f

4
Snn

2 1~C2T!~12 f !Snn2~12 f !2CT50. (23)

However, this yield criterion behaves poorly for largeSnn
when compared with the analytical solution described in the n
section. It was brought to our attention that in the limit ofC
5T, Eq. ~23! is the same as the two-term series expansion
Gurson’s model:

F5Seq
2 12 f T2 coshS Snn

2T D2~11 f 2!T250. (24)
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We then seek an improved solution as follows. Recognizing T
lor’s expansion of coshx811

1
2x

2, the yield criterion can be modi
fied as

F5Seq
2 12 f CT coshS Snn

2ACTD 1~C2T!~12 f !Snn2~11 f 2!CT

50. (25)

WhenC5T, it is identical to Gurson’s yield criterion for spher
cal voids~Eq. ~24!!.

Results. The yield functionF ~Eq. ~25!! reduces to that of the
matrix whenf 50, and to that of Gurson’s whenC5T. The nor-
malized yield function~Eq. ~25!! for C/T51.1 at variousf is
shown in Fig. 1. Although the yield surface of the matrixf
50) is open in the direction of negativesnn , the porous yield
surface is closed. As the yield surface of the matrix is not sy
metric with respect toSnn50, the porous yield surface is als
asymmetric. The porous yield surface becomes smaller asf in-
290 Õ Vol. 67, JUNE 2000
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creases and falls within the envelope of the yield surface of
matrix. Figure 2 shows the porous yield surface, at anf 50.1, as a
function of pressure dependence (C/T).

For rigid-plastic situation, an exact solution for purely hydr
static loading can be found by using the equilibrium equation a
Eq. ~1!. The solutions satisfy

2
1

c
~Ab1cx1a ln@2a1Ab1cx# !ux50

x5Snn/3
5

1

3
ln f , Snn>0;

(26)

1

c
~Ab1cx2a ln@a1Ab1cx# !ux50

x5Snn/3
5

1

3
ln f , Snn,0

(27)

where a5C2T, b5C22CT1T2 and c53(T2C). Figure 3
shows the comparison of the exact solution with that of the up
bound~Eq. ~23!! and the modified upper bound~Eq. ~25!! solu-
tions for f versus the hydrostatic stress. It should be noted that
Fig. 1 Yield surfaces of spherical voids CÕTÄ1.1

Fig. 2 Comparison of yield surfaces „fÄ0.1… with matrix yield surfaces for dif-
ferent CÕT
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Fig. 3 Comparison of exact solutions with the upper bound and modified upper
bound yield surface „CÕTÄ1.1… for purely hydrostatic loading
e
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n

y

e

i
e

of
term modified upper bound refers to a modified form of the yi
function but itself is not an upper bound solution. As the ex
solution falls within the envelope of that from Eq.~23!, the upper
bound nature of Eq.~23! is clearly seen. The modified uppe
bound~Eq. ~25!! indicates that the result is improved significant
over the original one. It should be noted that the exact solutio
valid for both associated and nonassociated flow rules.

Figure 4 shows the significant effect of pressure dependenc
yielding in that the yield surfaces for a pressure-dependent ma
are generally smaller than those for a pressure-independent
The difference becomes smaller whenf reaches a high value~such
as 0.5!.

From our formulation, in the limit ofC5T ~or whena050!,
the velocity field is identical to that used by Gurson. However, E
~23! in the limit does not reduce to that of Gurson’s yield crit
rion. A detailed examination reveals that this difference is due
the assumption ofa05constant. In particular, for von Mises cr
terion, s̄ is a constant. In view of Eq.~6!, we can also write
echanics
ld
ct

r
ly

is

on
trix
one.

q.
-
to

-

lim
C2.T

s̄5T. (28)

With the assumption ofa05constant, Eq.~28! is no longer valid
which contributes to the difference in Eq.~23! from Gurson’s
model in the limit ofC5T. In particular, witha05constant, Eq.
~5! indicates that

s̄

eG
5constant, (29)

which is the equation of a viscous material.

4 Rigid-Plastic Porous Model for Cylindrical Voids
The unit cell for cylindrical voids is a cylinder of inner radiusa,

outer radiusb, and lengthL. The rectangular coordinate 3 is in th
same direction asz, with 1 and 2 directions in ther –u plane. The
velocity field is constructed following the same principle as that
Fig. 4 Comparison of porous yield surfaces with modified von Mises and von
Mises matrices
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the spherical voids. However, due to the nature of transverse
ropy, the velocity field for cylindrical voids is more complicate
We will first obtain the velocity field affected by the pressu
dependency of the matrix (v i

d), i.e., the velocity field which is
different from that of Gurson’s. The velocity field which is com
mon to that of Gurson’s will then be added later on. Matrix co
pressibility requires

]v r
d

]r
1

v r
d

r
1

]vz
d

]z
5 ėkk[a0 . (30)

Assuminga0 as constant,v r
d(r ), vz

d(z), one has

]v r
d

]r
1

v r
d

r
5c2 ;

]vz
d

]z
5c3 ; c21c35a0 . (31)

From Eq.~31a!, v r
d5c1 /r 1c2r /2. Applying the boundary condi-

tion vz
duS5Ė33z leads toc35Ė33 such thatc25a02Ė33. The

boundary condition for the normal strain in the radial directio
v r

duS5
1
2(Ė221Ė11)r ur 5b , leads toc15

1
2(Ėkk2a0)b2. One has

then

v r
d5

b2

2r
~Ėkk2a0!1

r

2
~a02Ė33!; vz

d5Ė33z. (32)

Adding the part of the velocity field which is common to bo
Gurson and the current model, and using conventions of Gu
@5#, one has finally

v r5
b2

2r
~Ėkk2a0!1

r

2
~a02Ė33!

1S c4r 31c5r 1c6

1

r
1c7

1

r 3D cos 2u1V32z cosg, (33)

vu5S 22c4r 32c5r 1c7

1

r 3D sin 2u2V32z sing, (34)

vz5Ė33z1S c8r 1c9

1

r D cosg. (35)

The velocity field on the outer surface can be expressed
terms of macroscopic quantities,

v r5Ė8b cos 2u1
1

2
~Ė221Ė11!b1V32z cosg, (36)

vz5V23b cosg1Ė33z, (37)

where Ė8[ 1
2(Ė222Ė11), V32 is the shear velocity per unit axia

length on the~3! plane andV23 is the normalized shear velocit
parallel to the~3! axis. The condition of zero shear stress-ze
shear strain rate on the void surface is

ė ruur 5a5 ė rzur 5a50. (38)

Equations~36!, ~37!, and ~38! are four equations in the six
unknownsc4 throughc9 . The remaining two equations are ob
tained by settingc450 ~@5#! and determiningc5 by minimizing
the dissipation.

Once the velocity field is constructed, we will follow the sam
procedure as that of the spherical voids. The optimizeda0 is

a05~C2T!

3
A3F Ėkk

2 1 f S 4CEPĖ821
4

11 f
~Ė13

2 1Ė23
2 !13Ė33D G

3~C2T!21 f ~C1T!2 ,

(39)

where
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CEP5
3~12 f !2~41 f !

4~11 f !~313 f 23 f 21 f 3!
.

Yield Criterion. Using Eq. ~10!, the macroscopic stress in
variants are

Seq5
~12 f !~C2T!

2a0

3A~a023Ė33!
2112CEP

2 Ė821
48

11 f
~Ė13

2 1Ė23
2 !,

(40)

Sgg5S111S225
~12 f !~C2T!

a0f
~Ėkk2a0!. (41)

We now consider two special cases. The first is the axisymm
ric case~Ėi j u iÞ j50, Ė115Ė22!. The procedure in the elimination
of the strain rate components for spherical voids is also used
the cylindrical voids. The yield surface obtained is

F5Seq
2 1

3

4
f Sgg

2 1~12 f !~C2T!S 3

2
Sgg7SeqD

2~12 f !2CT50, (42)

where the negative sign is used whenĖ33<0, or whenĖ33.0 and
(Ėkk /Ė33)

2>9112f CT/(C2T); and the positive sign is use
when Ė33.0 and (Ėkk /Ė33)

2,9112f CT/(C2T). Following
the procedure for the spherical voids, the yield criterion can
modified as

F5Seq
2 12 f CT coshS A3Sgg

2ACT
D 1~12 f !~C2T!S 3

2
Sgg7SeqD

2~11 f 2!CT50. (43)

WhenC5T, it becomes

F5Seq
2 12 f T2 coshSA3Sgg

2T D 2~11 f 2!T250, (44)

which is identical to Gurson’s yield surface for axisymmetric c
lindrical voids.

The second case of cylindrical void is plane strain~Ėi j u iÞ j

50, Ė3350!. The yield surface becomes

F5
Seq

2

CEP
1

3 f

4
Sgg

2 1
3

2
~12 f !~C2T!Sgg

2
~12 f !2

4 S ~C2T!2

CEP
1~C1T!2D50. (45)

The modified yield criterion is

F5
Seq

2

CEP
12 f CT coshS A3Sgg

2ACT
D 1

3

2
~12 f !~C2T!Sgg

2
~12 f !2

4 S ~C2T!2

CEP
1~C1T!2D22 f CT50. (46)

WhenC5T, it is slightly different from Gurson’s yield criterion
and is

F5
Seq

2

CEP
12 f T2 coshSA3Sgg

2T D 2~11 f 2!T250. (47)

For comparison, we record Gurson’s yield criterion below:

F5CeqSeq
2 12 f T2 coshSA3Sgg

2T D 2~11 f 2!T250, (48)
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whereCeq5(113 f 124f 6)2. It should be noted that the coeffi
cient Ceq in Eq. ~48! comes from numerical approximatio
whereasCEP in Eq. ~47! is in an analytical form.

Results. The yield functionF for axisymmetric voids~Eq.
~43!! reduces to that of Gurson’s whenC5T. This is not true for
the plane strain case~Eq. ~46!, Fig. 7~a!!, due to a different ap-
proach used in this paper in calculating the coefficientc5 . The
yield surface for cylindrical voids~axisymmetric and plane strain!
are shown in Fig. 5. We note that, there are two axisymme
yield surfaces~dashedand dotted! corresponding to differen
modes:dashedcurves are forĖ33<0, as well as forĖ33.0 and
(Ėkk /Ė33)

2>9112f CT/(C2T); the dotted curves are forĖ33

.0 and (Ėkk /Ė33)
2,9112f CT/(C2T).

For higher values off ~Fig. 5~a!! and lower values of (C/T)
~Fig. 5~b!!, the yield surface for the plane strain case falls with
the envelope of that of the axisymmetric case. However, gene
these two yield surfaces overlap at various locations.

For rigid-plastic situation, an approximate solution for a spec
Journal of Applied Mechanics
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tric
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ally

ial

case~ė115 ė22Þ0, other strain rates are zero! can be found by
using the equilibrium equation, flow rule, and Eq.~1!. The solu-
tions satisfy

12

c
~2Ab1cx2a ln@2a1Ab1cx# !ux50

x5Sgg/2
5 ln f , Sgg>0;

(49)

12

c
~Ab1cx2a ln@a1Ab1cx# !ux50

x5Sgg/2
5 ln f , Sgg,0,

(50)

where a53(C2T), b512(C22CT1T2), and c536(T2C).
The approximate solution is valid for the associated flow ru
Figure 6 shows the comparison of the approximate solution w
that of the upper bound~Eq. ~42! for the axisymmetric case, Eq
~45! for plane strain! and modified upper bound~Eq. ~43! for the
axisymmetric case, Eq.~46! for plane strain! for f versus the trans-
verse ‘‘hydrostatic’’ stress. Again, the upper bound nature of E
~42! and Eq.~45! is clearly seen. The modified upper bound yie
Fig. 5 Yield surfaces of cylindrical voids for axisymmetric and plane-strain cases,
„a… CÕTÄ1.1, „b… fÄ0.1
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Fig. 6 Comparison of approximate solution with the upper bound and modified
upper bound yield surface „CÕTÄ1.1… for transverse ‘‘hydrostatic’’ loading
u
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functions~Eqs.~43! and ~46!! indicate that the results have bee
improved significantly over the original upper bound ones.

Figure 7 shows the significant effect of pressure dependenc
the matrix on yielding for the plane strain~Fig. 7~a!! and axisym-
metric ~Fig. 7~b!! cases. The general trend is that the yield s
faces of pressure-dependent matrix (C/T51.1) are smaller than
those of the pressure-independent ones (C/T51).

5 Generalization to Elastic-Plastic Strain-Hardening
for Spherical Voids

To facilitate solutions of boundary value problems, we no
formulate constitutive equations to include elasticity and str
hardening. For the hardening response of glassy polymers we
use the simple model developed by Lee@15#. As polymers gener-
ally also soften, we will use a strain-space approach~@16–19#!. In
generalizing the rigid perfectly plastic case to include elas
plastic strain-hardening, one has the flexibility in choosing s
able flow rules for the matrix different from the associated o
Next we define the macroscopic plastic strain rate by using
normality rule~cf. @20,19#!

Ėi j
p 5l

]F

]S i j
. (51)

We will now use a simplified version of the hardening model
@15# assuming no plastic volume change of the matrix~nonasso-
ciated flow rule! as a first approximation. References@14# and
@18# further discuss these issues in more details. The evolutio
T andC is assumed to be

Ṫ5HTeG p, Ċ5HCeG p (52)

where

HT5
]T

]ēp , HC5
]C

]ēp , (53)

and ēp5*eG pdt. Next we need to find the evolution of the micro
scopic equivalent plastic strain rateeG p with respect to macro-
scopic quantities. Following Tvergaad@4#, we have the plastic
work equivalence

eG p5
S i j8 Ėi j

p

~12 f !s̄
, (54)
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which essentially assumes thats̄ and eG p do not vary within the
unit cell. For the current situation, we substitute Eqs.~6! and~19!
into Eq. ~54! and solve foreG p such that

eG p5S 2S i j8 Ėi j
p

3~12 f !
A Ėkk

2 1
9

4
f EG 2

~C2T!21 f CT
D 1/2

. (55)

The evolution of the void fraction is assumed to be

ḟ 5~12 f !Ėkk
p . (56)

A yield function ~g! is found by substituting the following equa
tion

S i j8 52m~Ei j8 2Ei j8
p!, Snn53k~Ekk2Ekk

p ! (57)

into Eq. ~25! where m is the shear modulus andk is the bulk
modulus. Using the consistency equation and Eqs.~52!–~56!, we
have

Ėi j
p 5

ĝ

Z1D

]F

]S i j
, (58)

where

ĝ5
]g

]Ei j
Ėi j (59)

and

Z5
]g

]Ei j

]F

]S i j
, (60)

D52S ]g

]C
HC1

]g

]T
HTDY2

]g

] f
~12 f !

]F

]Snn
, (61)

where

Y5S 2S i j8
]F

]S i j

3~12 f !
AS ]F

]Snn
D 2

19 f Seq
2

~C2T!21 f CT
D 1/2

. (62)

During loading,g50, the response of the material is hardening
ĝ.0, softening if ĝ,0 and neutral loading ifĝ50. The stress
rate versus strain rate relations can be written as
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Fig. 7 Effect of pressure dependence on yield surfaces for cylindrical voids, „a…
plane strain, „b… axisymmetric case
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(̇ i j 5~Mi jkl
e 2Mi jkl

p !Ėkl5Mi jkl
e ~Ėkl2Ėkl

p !, (63)

where the elasticity matrix is

Mi jkl
e 5m~d i l dk j1d ikd l j !1S k2

2

3
m D d i j dkl . (64)

So the plastic moduliMi jkl
p , using Eqs.~58!, ~59!, become

Mi jmn
e

]F

]Smn

]g

]Ekl
/~Z1D!.

As a simple application of the constitutive equations derived,
find the response of polycarbonate under uniaxial stretching w
an initial void fractionf 050.001~which could be the result of the
nucleation of a craze!. The material properties are from the e
perimental data of@21# which have been analyzed by Lee@15#.
The Young’s modulus used is 2400 MPa, Poisson’s ratio is 0
The stress-strain curves of the matrix, shown in Fig. 8~a!, are
interpolated using Mathematica which allows analytical eval
echanics
we
ith

-

38.

a-

tion of the hardening parametersHT andHC . The progressively
damaged stress-strain response of the material is shown in
8~b! which follows similar trend of the hardening-softening
matrix but the stress is lower than that ofT. The evolution of the
void fraction is shown in Fig. 8~c!. At this moment, there is no
systematic and comprehensive experimental data to rigorously
sess the accuracy of the present model.

6 Discussions and Conclusions
The porous yield surface, unlike the matrix, is closed in t

direction of positive and negativeSnn . The upper bound nature
was evident when comparison with analytical solutions for
purely hydrostatic or the transverse ‘‘hydrostatic’’ stress load
was made. After modification, the yield functions have been
proved significantly over the upper bound ones.

The pressure dependency of the matrix makes a significant
pact on the response of the material.
JUNE 2000, Vol. 67 Õ 295
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Fig. 8 Uniaxial stretching of polycarbonate, „a… stress-strain curves of the matrix C and T,
„b… stress-strain curve of the porous material, „c… evolution of void fraction f
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For hardening-softening materials such as glassy polymers
conditions for the onset of instability as well as post-localizat
are of interest. These conditions are very sensitive to the mat
models used. Detailed analysis on instability, including effects
rate sensitivity and different hardening models~such as the orien-
tation hardening model~@22–23#! and their influence on crazing i
beyond the scope of this paper and will be reported in the n
future.
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The Influence of ‘‘Shell Behavior’’
on Load Distribution for
Thin-Walled Conical Joints
This article presents a new analytical method with a numerical solution to calculate
distribution in threaded connections. Our departure model was that suggested by
Sopwith who has proposed the most recent and most tested theory. Our research c
in the introduction of conicity and, above all, in the development of the influenc
boundary geometry (i.e. the nonthreaded section) on load distribution. Pipe joints
analyzed in special detail, supplying us with useful finite element method compa
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Introduction
The experimental approach in the research into threaded

nections is that which has been followed by the majority of a
thors, especially prior to the establishment of numeric metho
such as finite elements.

In recent times, computer-based methods have attracted a
attention in giving the opportunity of obtaining complete results
terms of local stress and no longer only in load distribution.

J. N. Goodier@1# was the first in 1940 to use an analytic
approach consisting in an approximate formula between displ
ment and axial load. In 1948 D. G. Sopwith@2# suggested the firs
accurate theory to obtain load distribution, having been insp
by Goodier’s work. E. E. Stoeckly and H. J. Macke@3# broadened
Sopwith’s formula in 1952 with the introduction of the taper.

Thus, the analytical bibliography available basically consists
Sopwith’s theory, which is weak in that the following are n
taken into consideration:

1 threading conicity,
2 element bending behavior due to the variable load abso

by the thread, and
3 the effect of the boundary substructures on the threaded

A new analytical approach is presented to improve the Sopw
model which is not suitable for thin joints with complex structur
schemes.

Geometry
The calculation of load distribution is done by expressing

displacements of the contact points by means of the con
forces, by writing a congruence equation to impose the con
~without separations or penetrations of teeth flanks!, and by solv-
ing the differential problem obtained.

The factors forming the relative total separation between
flanks are three:

1 d I , relative axial displacement due to thread bending,
2 d II , relative axial recession due to radial displacement

bolt and nut sections~according to Goodier’s notation,reces-
sion is the axial separation of two threads consequent o
relative radial displacement between them!, and

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, D
cember 23, 1998; final revision, April 12, 1999. Associate Technical Editor: W.
Liu. Discussion on the paper should be addressed to the Technical Editor, Prof
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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3 d III , relative axial displacement due to the different ax
bolt and nut strain.

We have considered~Fig. 1! the threaded part of a conic join
~intended as the part between two planes perpendicular to the
and crossing the first and last points of engagement between
and bolt! as being subjected to boundary actions by the remain
parts.

The situation examined, which will be indicated as ‘‘forcing
condition,’’ is that characterized by the placing of the axi
make-up load2P on the lower nut surface andP on the lower
bolt surface~Fig. 1!.

The basic geometrical measurements of the threaded part~Fig.
1! are the lengthL, the thread start diameterD0 f i l , internal and
external diametersD0 andD3 , and the conicityc.

The characteristic abscissas~Fig. 2! arex, the axial abscissa and
s, the curvilinear abscissa along the thread helix, both meas
from the loaded surface.

There is a link between them, which can be obtained for
constant pitch~a! helix with conicity c of Fig. 2:

x~s!5
D0 f i l

2 tanc
2A D0 f i l

2

4 tan2 c
2

sa

p tanc
. (1)

The diameters corresponding to the half-thickness surface
the nut and bolt, represented with dotted lines in Fig. 1,
Dn(s)52Rn(s) andDb(s)52Rb(s); D f il (s)52Rf il (s) is the ge-
neric engagement diameter~Fig. 1!.

-
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ssor

on,
li-

Fig. 1 Threaded part of a generic joint
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Factor d I

We assume that the thread~Fig. 2! is obtained by turning with
a radial~and not perpendicular to the external conic surface! pen-
etration of the tool.

The independent dimensions are:a, pitch; b, thread half-angle;
c, thread conicity;d2 , upper cut off value; andr, notch radius.

The dependent dimensions are

b5
a

2 S 1

tanb
2tanb* tan2 c D (2)

d1>r S 1

sinb
21D (3)

d5b2d12d2>b2d22r S 1

sinb
21D (4)

L f5AB5
a

2 sinb
2

a* tanc

2 cosb
2r * tanS p

2
2b D

2
d2

cosb1sinb* tanc
(5)

Ry5O1Y5
a

2 S 1

sinb
1

tanc

cosb D2
d1

cosb
(6)

Rx5O1X5
a

2 S 1

sinb
2

tanc

cosb D2
d1

cosb
. (7)

The factord I is the one due to the bending, caused by cont
forces, of both thread flanks in contact~Fig. 3!.

Fig. 2 Threading geometry

Fig. 3 Contact forces and displacements
Journal of Applied Mechanics
act

The vertical factorw is the unknown element, the global forc
r is equal tow sec(b2f), and the horizontal factor isw tan(b
2f) wheref5arctg(f ) is the static friction angle.

The mutual forces are per unit thread length and act at
resulting force application point, which may not necessarily be
point M of middle contact area~Fig. 2!.

So, we express thew lever arm referring to pointO1 asb/2* cf
~Fig. 2!, introducing a position coefficientcf .

Under nominal conditions, with the resulting forcer acting on
M ~the middle point ofL f), we have

cf ,nom5
d2

b1b* tanb* tanc
1

a

2b* tanb

2
a* tanc

2b
2

r

b
tanS p

2
2b D cosb. (8)

After having moved the two forces to pointO1 it is possible to
solve the elastic wedge problem in a plain-strain condition in
polar coordinates shown in Fig. 4, binding pointX with a hinge
andY with a roller sloped at ac angle to the axis.

The three forces shown in Fig. 4 aref 5w, q5w tan(b2f),
m5w@11tan(b)tan(b2f)#*b*cf /2.

The stresses are~@4#!

5
sq50 9~a!

sr52
2A

r2 sin~2q!1
2B

r
sin~q!2

2C

r
cos~q! ~9b!

trq5
A

r2 ~cos~2q!2cos~2b!!. ~9c!

The constantsA, B, Care

A5
m

sin~2b!22b cos~2b!
, (10a)

B5
f

2b2sin~2b!
, (10b)

C5
q

2b1sin~2b!
. (10c)

If u(r,q) and v(r,q) are the radial and tangential displac
ments, we obtain from the displacement strains and strain stre
links in polar coordinates

Fig. 4 Polar coordinates in the thread, equivalent loads and
boundary conditions
JUNE 2000, Vol. 67 Õ 299
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12n2

]u

]r
5sr2

n

12n
sq ~11a!

E

12n2

1

r S u1
]v
]q D5sq2

n

12n
sr ~11b!

E

12n2

1

r S ]u

]q
1r

]v
]r

2n D52S 11
n

12n D trq . ~11c!

We obtain the displacements solving the equation system~11!:

E

12n2 u~r,q!5
2A sin~2q!

r
12B sin~q!log~r!

22C cos~q!log~r!1C1 cos~q!

1C2 sin~q!2CS 12
n

12n Dq sin~q!

2BS 12
n

12n Dq cos~q!. (12)

E

12n2 v~r,q!52
An cos~2q!

r~12n!
12B

n

12n
cos~q!

12C
n

12n
sin~q!1

A

r
cos~2q!

12B cos~q!log~r!12C sin~q!log~r!

1C3r1
A cos~2b!

r~12n!
2C1 sin~q!1C2 cos~q!

1CS 12
n

12n D ~sin~q!2q cosq!

1BS 12
n

12n D ~cos~q!1q sinq!. (13)

The three unknown constantsC1 ,C2 ,C3 can be obtained by
introducing the boundary conditions

5
u~r5Rx ,q5b!50 ~14a!

v~r5Rx ,q5b!50 ~14b!

u~r5Ry ,q52b!* cos~b1c!

1v~r5Ry ,q52b!* sin~b1c!50. ~14c!

By developing the boundary condition expressions~14! we ob-
tain a linear equation system in the unknownC1 ,C2 ,C3 :

F A11 A12 A13

A21 A22 A23

A31 A32 A33

G H C1

C2

C3

J 5H B1

B2

B3

J , (15)

the coefficients

A115cosb, A125sinb, A1350,

A2152sinb, A225cosb, A235Rx ,

A315cosb cos~b1c!1sinb sin~b1c!,

A325cosb sin~b1c!2sinbcos~b1c!,

A335Ry sin~b1c!,

and the known terms

B152
2A sin~2b!

Rx
12 log~Rx!~C cosb2B sinb!

1bS 12
n

12n D ~C sinb1B cosb!
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B252
2A cos~2b!

Rx
22 log~Rx!~C sinb1B cosb!

1bS 12
n

12n D ~C cosb2B sinb!2
B

12n
cosb

2
C

12n
sinb

B35
2A

Ry
@sin~2b!cos~b1c!2cos~2b!sin~b1c!#

2B cosb sin~b1c!F 1

12n
12 log~Ry!G12B sinb cos~b

1c!log~Ry!2BS 12
n

12n Db cosb cos~b1c!

2BS 12
n

12n Db sinb sin~b1c!

2CS 12
n

12n Db cosb sin~b1c!

1CS 12
n

12n Db sinb cos~b1c!12C log~Ry!

3cosb cos~b1c!1
C

12n
b sinb sin~b1c!

12C log~Ry!b sinb sin~b1c!.

The system~15! can be solved numerically.
We evaluate the displacements~especiallyv! at the point where

the mutual forces act, havingr̄5b/2 cosbcf ,q̄5b; so we express

d I52d I ,1tooth5
22v~ r̄,q̄ !

cosb
. (16)

We can introduce factorh ~axial recession compliance factor!:

d I5
2h

E
w (17)

So

h5E
2v~ r̄,q̄ !

w cosb
. (18)

Conical Shells With Shear Behavior
We need to develop a theory which allows us to deal w

conical shells of variable thickness.
The best approach is Mindlin@5# and Reissner@6# for cylindri-

cal axisymmetrical shells, which includes the shear strain in
kinematic model.

The extension in the case of the half-thickness conical surf
is obtained by modifying the equilibrium equations keeping t
Transactions of the ASME
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kinematic model unchanged. The criteria used are shown in F
and Fig. 6.

Fig. 5 Shell coordinates

Fig. 6 Shell displacements and load conventions
s

Journal of Applied Mechanics
g. 5

Displacements of a point outside the half-thickness shell s
face are

H sx5u~x!2zw~x!

sr5y~x!

sq50
. (19)

Strains are

¦

«x5
dsx

dx
5

du~x!

dx
2z

dw~x!

dx

« r5
dsr

dr
50

«q5
sr

r
1

dsq

rdr
5

y~x!

R~x!

gqx5
dsx

rdq
1

dsq

dx
50

g rq5
dsr

rdq
1

dsq

dr
2

sq

r
50

g rx5
dsx

dr
1

dsr

dx
5

dy~x!

dx
2w~x!

(20)

and stresses are
5
sx5

E

~12n2!
~«x1n«q1n« r !5

E

~12n2!

du~x!

dx
2

E

~12n2!

zdw~x!

dx
1

nE

~12n2!

y~x!

R~x!

sq5
E

~12n2!
~«q1n«x1n« r !5

E

~12n2!

y~x!

R~x!
1

nE

~12n2!

du~x!

dx
2

nE

~12n2!

zdw~x!

dx

t rx5Gg rx5GS dy~x!

dx
2w~x! D

(21)
Integrating the stresses we obtain the internal forces per
length; we introduce the equivalent thicknessh* (x)55/6h(x) so
as not to overlook the variation oftxr on the same thicknes
~Timoshenko@7# and Corradi Dell’acqua@8#!.

The internal forces are

Mx5
Eh3~x!

12~12n2!

dw~x!

dx
, Mq5

nEh3~x!

12~12n2!

dw~x!

dx

Nx5
Eh~x!

~12n2!

du~x!

dx
1

nEh~x!

~12n2!

y~x!

R~x!
,

Nq5
nEh~x!

~12n2!

du~x!

dx
1

Eh~x!

~12n2!

y~x!

R~x!
(22)

Txr5Gh* ~x!S dy~x!

dx
2w~x! D .

The following links can be observed:

Mq5nMx

Nq5
Eh~x!

R~x!
y~x!1nNx . (23)

We write the equilibrium equations including the conicity effe
of the half thickness surface~Fig. 7!; ignoring the superior infini-
unit

ct

tesimal quantities and simplifying the expressions we obtain

5
dNx

dx
52

dR

dx

dTxr

dx
1

Txr

R

dR

dx
5

Nq

R
2p

Mx

R

dR

dx
1

dMx

dx
2Nx

dR

dx
5m2Txr .

(24)

Substituting in the last two Eqs.~24! the expressions~22!, ~23!
we get the following equation system:

Fig. 7 Internal and applied loads
JUNE 2000, Vol. 67 Õ 301



H D2~x!S d2y~x!

dx2 2
dw~x!

dx D1S D2~x!R8~x!

R~x!
1D28~x! D S dy~x!

dx
2w~x! D2D3~x!y~x!52p~x!1

nNx~x!

R~x!

D1~x!
d2w~x!

dx2 1S D1~x!R8~x!

R~x!
1D18~x! D dw~x!

dx
1D2~x!S dy~x!

dx
2w~x! D5m~x!1Nx~x!R8~x!

(25)

D1~x!5
Eh3~x!

12~12n2!
, D2~x!5Gh* ~x!, D3~x!5

Eh~x!

R2~x!
, R8~x!5

dR~x!

dx
.

a

d

o-

rm
s-

he

the

the
The boundary conditions are the following:

D1~x50!
dw

dxU
x50

5Mx,in

D2~x50!S dy

dxU
x50

2w~x50! D 5Txr,in

D1~x5L !
dw

dxU
x5L

5Mx, f in

D2 ,~x5L !S dy

dxU
x5L

2w~x5L ! D 5Txr, f in . (26)

Factor d II

We consider the nut and bolt as two smooth conical she
touching along the surface defined by the points of contact on
thread.

If we ignore the radial displacement variation between the h
thickness surface and the interface we can express

d II 5~yn~s!2yb~s!!tanb, (27)

coupling the shell equations to the congruence relation.
The load system of the two shells consists in the axial lo

Nx,n5(*0
swds2P)/(2pRn) andNx,b5(P2*0

swds)/(2pRb) and
in the interface pressure~made axisymmetrical by giving the sam
value to all the points on each parallel! p5w/a tan(b2f).

Since in the shell Eqs.~25! the loads refer to the half-thicknes
surface, it is necessary to move there the axial distributed loaw,
acting on the interface at a distance ofD f il /2 from the axis, thus
introducing the distributed momentmn5w/a(Rn2D f il /2) and
mb5w/a(D f il /22Rb) ~Fig. 8!.

Factor d III
Factord III is associated with the relative axial displacement

the contact area due to axial strainsex,n andex,b .
Ignoring the contribution ofNq , Mx and Mq into ex,n and

ex,b , due to the strengthening effect of the tooth, and keeping
302 Õ Vol. 67, JUNE 2000
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mind the axial load expressionsPn52(P2*0
swds) and Pb5P

2*0
swds for nut and bolt, we maintain the equation already pr

posed by Sopwith:

dd III 5
dx

E S Pn

An
2

Pb

Ab
D5

dx

E H E
0

s

wdsF 1

Ab
1

1

An
G2PF 1

Ab
1

1

An
G J .

(28)

Differential Equation System
The congruence equation isdd III 5d(d II 1d I); substituting the

explicit expressions~17!, ~27!, ~28! we obtain

2S 1

Ab
1

1

An
D dx

ds E0

s

wds12h
dw

ds
1EtanbS dyn

dx
2

dyb

dx D dx

ds

52
dx

ds
PS 1

Ab
1

1

An
D . (29)

The associated boundary condition is*0
s1wds5P; s1 is the over-

all length of the thread helix.
It is necessary to emphasize how the differentiation of the te

d II 5(yn(x(s))2yb(x(s)))tanb takes place by means of compo
ite derivatives, in such a way as to obtain the derivatives ofyn and
yb as regards the axial coordinatex, the most simple to solve the
shell equations.

In the case of the congruence equation it is easier to use ts
variable, both for the presence of the integral term*0

swds, and for
the more immediate physical interpretation ofw.

Thus in the system both variabless andx are found; however,
the system will depend on a single unknown, since we have
link ~1!.

Keeping in mind the shell equations, it is possible to express
overall differential system of Eqs.~30!:
Fig. 8 Distributed moment m due to w movement
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The Boundary
In order to calculate the mutual boundary forces, which dep

on the overall structural geometry, it is not possible to formulat
general theory; each type of joint is an individual case and
quires a specific solution.

We obtain the solution for the pipe joints, assuming that
radial interference is found between the two elements du
makeup.

The geometrical dimensions of the structure and the subdivi
into six elements~nut, bolt, shell A, shell B, shell C and shell D!
are shown in Fig. 9.

The evaluation of the boundary actions for nut and bolt ta
place considering the adjacent parts as shells, in order to eva
numerically the border coefficients and write the kinematic c
gruence solving equations.

In Fig. 10 the subdivision of the joint in its substructures a
mutual actions in forcing condition is shown.

It is possible to recognize the actions already introduc
Journal of Applied Mechanics
nd
e a
re-

no
ing

ion

es
uate
n-

d

d:

Mx,n,in andTxr,n,in between nut and shell A,Mx,n, f in andTxr,n, f in

between nut and shell D,Mx,b,in and Txr,b,in between bolt and
shell C and finallyMx,b, f in andTxr,b, f in between bolt and shell D

The interaction between shell A and shell C on the shoulde
characterized by the axial make-up loadP ~which loads by com-
pression the lower surface of shell A and generates traction on
section of shell C between the shoulder and the start of the b!
and tangential loadTxr,A,in5 f P/(pDmed,sp) due to friction
(Dmed,sp is the medium thickness shoulder diameter!.

To be exact a mutual contact moment should be present
tween shell A and shell C~this is not shown in Fig. 10!; said
moment cannot be expressed in terms ofP, and as such would be
a further unknown source of mathematical complexity. So fro
now on we will ignore it, introducing an approximation which ca
be verified numerically.

The annotation used is the following:yTM ,shell,
f in
in (wTM ,shell,

f in
in )

for the displacement~rotation! coefficients due to shear/momen
JUNE 2000, Vol. 67 Õ 303
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Fig. 9 Pipe joint dimensions, coordinates and substructures

Fig. 10 Mutual forces in a pipe joint’s forcing condition
l

a

ua-
nce
are,
on the initial/final part of ‘‘shell’’;yshell,
f in
in (wshell,

f in
in ) for the ‘‘bor-

der’’ displacement~rotation! due to shear/moment on the initia
final part of ‘‘shell.’’

The border coefficients and the ‘‘border’’ displacements
d

.

JUNE 2000
/

re

assumed to be positive, using, in writing the congruence eq
tions, the plus/minus criteria of the shell theory. The congrue
equations at the beginning and the end of the nut and bolt
respectively,
H 2Txr,n,in* yT,n,in1Mx,n,in* yM ,n,in1yn,in5Txr,n,in* yT,A, f in1Mx,n,in* yM ,A, f in1yA, f in

Txr,n,in* wT,n,in2Mx,n,in* wM ,n,in1wn,in5Txr,n,in* wT,A, f in1Mx,n,in* wM ,A, f in1wA, f in
(31)

HTxr,n, f in* yT,n, f in1Mx,n, f in* yM ,n, f in1yn, f in52Txr,n, f in* yT,B,in1Mx,n, f in* yM ,B,in1yB,in

Txr,n, f in* wT,n, f in1Mx,n, f in* wM ,n, f in1wn, f in5Txr,n, f in* wT,B,in2Mx,n, f in* wM ,B,in1wB,in
(32)

H 2Txr,b,in* yT,b,in1Mx,b,in* yM ,b,in1yb,in5Txr,b,in* yT,C, f in1Mx,b,in* yM ,C, f in1yC, f in

Txr,b,in* wT,b,in2Mx,b,in* wM ,b,in1wb,in5Txr,b,in* wT,C, f in1Mx,b,in* wM ,C, f in1wC, f in
(33)

HTxr,b, f in* yT,b, f in1Mx,b, f in* yM ,b, f in1yb, f in52Txr,b, f in* yT,D,in1Mx,b, f in* yM ,D,in

Txr,b, f in* wT,b, f in1Mx,b, f in* wM ,b, f in1wb, f in5Txr,b, f in* wT,D,in2Mx,b, f in* wM ,D,in
. (34)
e-
The systems~31!, ~32!, ~33! and ~34! cannot be solved by
Txr,b,n , Mx,b,in , Txr,b, f in , Mx,b, f in , Txr,n,in , Mx,n,in , Txr,n, f in ,
and Mx,n, f in ; in fact, all the ‘‘border’’ displacements of nut an
bolt depend on the unknownw which influences the load system
and is in its turn a function of all mutual actions:

w5w~Mx,n,in ,Txr,n,in ,Mx,n, f in ,Txr,n, f in ,Mx,b,in ,

3Txr,b,in ,Mx,b, f in ,Txr,b, f in!.

The problem is thus implicit and requires an iterative solution
s

The detailed functional expressions of the ‘‘border’’ displac
ments for nut and bolt are the following:

yn,in5yn,in~p,mn ,Nx,n ,Mx,n, f in ,Txr,n, f in!

wn,in5wn,in~p,mn ,Nx,n,Mx,n, f in ,Txr,n, f in!

yn, f in5yn, f in~p,mn ,Nx,n ,Mx,n,in ,Txr,n,in!

wn, f in5wn, f in~p,mn ,Nx,n ,Mx,n,in,Txr,n,in! (35)
Transactions of the ASME
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yb,in5yb,in~p,mb ,Nx,b ,Mx,b, f in ,Txr,b, f in!

wb,in5wb,in~p,mb ,Nx,b ,Mx,b, f in ,Txr,b, f in!

yb, f in5yb, f in~p,mb ,Nx,b ,Mx,b,in ,Txr,b,in!

wb, f in5wb, f in~p,mb ,Nx,b ,Mx,b,in ,Txr,b,in! (36)

where

p5
w

a
tan~b2f!

mn5
w

a S Rn2
D f il

2 D , Nx,n5

2P1E
0

s

wds

2pRn
,

mb5
w

a S D f il

2
2RbD , Nx,b5

P2E
0

s

wds

2pRb
.

The shell D ‘‘border’’ displacements are always void in that
shell D external loads do not act; for shell A, shell B, and shel
‘‘border’’ displacements are directly obtainable as the exter
actions are known functions of loadP:

yA, f in5yA, f in~Nx,A ,Txr,A,in!

wA, f in5wA, f in~Nx,A ,Txr,A,in!

yB,in5yB,in~Nx,B!

wB,in5wB,in~Nx,B!

yC, f in5yC, f in~Nx,C ,Txr,A,in!

wC, f in5wC, f in~Nx,C ,Txr,A,in! (37)

where

Nx,A5
2P

2pRA
, Txr,A,in5

f P

pDmed,sp
Nx,B50,

Nx,C5
P

2pRC
where LC2LA<xC<LC ;

0 where xC,LC2LA .

The iterative solution used consists in the following steps:

1 Calculate all the border coefficients involved.
2 Calculate the ‘‘border’’ displacements of shell A, shell B a

shell C.
3 Calculatew with all the void nut and bolt border actions:

Mx,b,in ,Txr,b,in ,Mx,b,fin ,Txr,b,fin ,Mx,n,in ,Txr,n,in ,Mx,n,fin ,Txr,n,fin

50.

4 Construct the nut and bolt load systems and calculate
associated ‘‘border’’ displacements.

5 Solve the congruence systems to find the boundary actio
6 Calculatew with the actions of Step 5.
7 Iterate Steps 4, 5, and 6 until convergence.

The calculation of border coefficients and displacements ta
place solving each shell by a numeric approach based on the
differences method; also the overall differential system, due to
complexity, is treated in the same manner.

Results
The results given are related to pipe joint API NC38@9# for

which we have developed a finite element method model.
Journal of Applied Mechanics
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Fig. 11 API NC38 joint Rfl in forcing condition with coefficient
of friction fÄ0 and axial load PÄ543 kN

Fig. 12 API NC38 joint radial displacement with coefficient of
friction fÄ0 and axial load PÄ543 kN

Fig. 13 API NC38 joint maximum Rfl value in forcing condi-
tion, with three friction values
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The comparative results areRfl ~ratio of flank load, the percent
age of axial load adsorbed by each thread pitch! and the radial
displacement outside the box~‘‘nut’’ element! and inside the pin
~‘‘bolt’’ element!.

In order to getRfl from the w(s) function we only need to
integrate on each thread pitch:

R f lj5
100

P E
spitch j

spitch j 11

w~s!ds.

The results obtained~Fig. 11, Fig. 12! show an affinity, both in
Rfl terms and in displacement terms, between the theoretical
finite element method values.

It is interesting to analyze the dependence, shown in Fig.
between the maximumRfl value and the friction coefficient.

Discussion
The results shown by this new approach clearly indicate h

important the correct reproduction of the threaded joint bend
behavior is, especially for those with thinner characteristics
complex boundary substructures, such as the pipe joint API N
examined.

For this type of joint Sopwith’s theory~generally accepted fo
common nuts and bolts! is no longer valid as it underestimates b
approximately 40 percent the load absorbed by the first pi
mainly because of the inexact deformed shape produced by
use of the thick cylinder formulas for thed II factor, which is now
calculated with suitable equations for conical shells.

One of the most valuable characteristics of the theoretical
proach is the speed with which the solution is obtained by
variation of the geometric parameters of the structure, which
lows us to carry out the joint optimization process, otherwise d
ficult by the finite element method.
306 Õ Vol. 67, JUNE 2000
and

13,

ow
ing
nd
38

y
ch,
the

ap-
the
al-
if-

The optimization process involves only the load distributi
without providing information on the local stress, which cannot
obtained by elaborating the internal element forces due to st
concentration induced by the notch radius.

However, the stress concentration can be limited using suita
constraints on the notch radiusr, on the flank contact lengthL f ,
and on the minimal resistance areaAn(s50).

Therefore, this proposed new approach is a very quick
efficient tool in the design and optimization process of thread
connections, which can significantly reduce the number of
merical analyses required.
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Explicit Modal Analysis of an
Axially Loaded Timoshenko Beam
With Bending-Torsion Coupling
Exact analytical expressions for the natural frequencies and mode shapes of a un
bending-torsion coupled Timoshenko beam are presented. The beam is taken to be
loaded, and for which cantilever end conditions apply. A symbolic computing pac
(REDUCE) has been used, which simplifies the analysis greatly. Results are presen
an illustrative example, which confirms the accuracy of the method, and provid
convenient benchmark for the validation of the finite element or other alternative app
mate methods. The approach offers the prospect of aeroelastic development, and i
putationally efficient, thus holding out the promise of eventual optimization.
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1 Introduction
Bernoulli-Euler and Timoshenko beams in flexure, have b

studied for many years, and there are excellent texts on the su
~@1,2#!. Explicit frequency equation and mode shapes
Bernoulli-Euler beams have also been available~@3#! for many
years, but the corresponding results for Timoshenko beams
axially loaded Timoshenko beams have only recently appea
~@4–6#! The comparatively more difficult problem of the free v
bration of a bending-torsion coupled beam with or without t
effects of shear deformation, rotatory inertia, and axial load
been studied for some time~@7–14#! without the explicit develop-
ment of the associated natural frequency and mode shape fo
las. These are presented here for the first time and relate to ax
loaded bending-torsion coupled Timoshenko beams. The dege
ate cases which converge back to established results are sho
be readily obtained by suitable choice of parameters.

In the derivation of frequency equation and mode shapes,
introduction of the bending-torsion coupling increases the ana
cal complexity of the problem to the point at which it is scarce
feasible to proceed without the use of a symbolic algebraic pa
age. The use of such a package—REDUCE~@15#!—has enabled
the bending-torsion coupled problem to become manageable

In the subsequent text, the governing differential equations
bending-torsion coupled Timoshenko beam are solved and bo
ary conditions imposed, so that the frequency equation and m
shapes are formulated. Without the use of symbolic computat
numerical methods would now be essential for further devel
ment. But, REDUCE~@15#! has been used here to obtain a co
plete algebraic reduction, thus replacing the numerical problem
an analytical one. An illustrative example is provided.

2. Theory
A straight uniform beam element of lengthL and of a tee cross

section is shown in Fig. 1, with the mass axis and the elastic
which are, respectively, the locus of the mass centers and
shear centers of the cross section, being separated by a dis
xa . The theory which follows is applicable to any singly symme
ric cross section with noncoincident mass and shear center, bu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, N
vember 3, 1998; final revision, November 8, 1999. Associate Technical Editor: V
Kinra. Discussion on the paper should be addressed to the Technical Editor, P
sor Lewis T. Wheeler, Department of Mechanical Engineering, University of Ho
ton, Houston, TX 77204-4792, and will be accepted until four months after fi
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tee cross section is shown as an illustrative example only
convenience. In the right-hand coordinate system of Fig. 1,
elastic axis, which is assumed to coincide with theY-axis, is per-
mitted flexural translationh(y,t) in the Z-direction and torsional
rotation c(y,t) about theY-axis, wherey and t denote distance
from the origin and time, respectively. A constant tensile ax
loadP is assumed to act through the centroid~mass center! of the
cross section, andP can be negative, so that compression is
cluded in the theory. Note that the axial displacement~in the
Y-direction! and bending displacement in theXY-plane are not
considered because they are uncoupled~with torsion!, and there-
fore, can be dealt with separately using existing theories~@3–5#!.

The governing partial differential equations of motion for th
coupled bending-torsional free natural vibration of the axia
loaded Timoshenko beam shown in Fig. 1 are~@13#!

EIu91kAG~h82u!2rI ü50 (1)

kAG~h92u8!1P~h92xac9!2m~ ḧ2xac̈!50 (2)

GJc91P$~ I a /m!c92xah9%2I ac̈1mxaḧ50 (3)

-
. K.
ofes-
us-
nalFig. 1 Coordinate system and notation for an axially loaded

bending-torsion coupled Timoshenko beam
000 by ASME JUNE 2000, Vol. 67 Õ 307
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whereE is the Young’s modulus,G is the shear modulus, andr is
the density of the material;EI, GJ andkAG are, respectively, the
bending, torsional, and shear rigidities of the beam;I is the second
moment of area of the beam cross section about theX-axis; k is
the section shape factor;A is the cross-sectional area;m (5rA) is
the mass per unit length;I a is the polar mass moment of inerti
per unit length about theY-axis ~i.e., an axis through the shea
center!; u is the angle of rotation in radians of the cross sect
due to bending alone~so that the total slopeh8 equals the sum of
slopes due to bending and due to shear deformation! and primes
and dots denote differentiation with respect to positiony and time
t, respectively.

Equations ~1!–~3! completely define the coupled bendin
torsional free vibration of an axially loaded uniform Timoshen
beam.

If a sinusoidal variation ofh, u, andc, with circular frequency
v, is assumed, then

h~y,t !5H~y!sinvt
u~y,t !5Q~y!sinvt
c~y,t !5C~y!sinvt

J (4)
o

o
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whereH(y), u(y), andC(y) are the amplitudes of the sinuso
dally varying vertical displacement, bending rotation, and tw
respectively.

Substituting Eqs.~4! into Eqs.~1!–~3! gives

EIQ91kAG~H82Q!1rIv2Q50 (5)

kAG~H92Q8!1P~H92xaC9!1mv2H2mv2xaC50 (6)

GJC91P$~ I a /m!C92xaH9%1I av2C2mv2xaH50. (7)

Introducing the nondimensional lengthj, and the differential op-
eratorD where

j5y/L

D5d/dj. (8)

Eqs.~5!–~7! can be written in matrix form as follows:
les
Gauss
F kAGLD EID22kAGL21rIv2L2 0

kAGD21PD21mv2L2 2kAGLD 2PxaD22mv2xaL2

2PxaD22mv2xaL2 0 GJD21~PIa /m!D21I av2L2
G F H

Q
C
G50. (9)

The coefficients of the differential operatorsD andD2 are constants in Eq.~9!, and one can eliminate any two of the three variab
H, u, and C to obtain the differential equation in terms of only one variable. This can be accomplished either by using
elimination or by expanding the determinant of the above 333 matrix and applying rules of linear operators to give

~D61āD42b̄D22 c̄!W50 (10)

where

W5H, Q or C (11)

and

ā5b2r 21
$a2b2~112c2p2s2!2a2c2p42b2~p22b2s2!%

$b2~11p2s2!1a2p2~11c2p2s2!%

b̄5
$b4~12b2r 2s2!2a2b4c2s2~112p2r 2!1a2b2~2c2p22b2r 2!%

$b2~11p2s2!1a2p2~11c2p2s2!%

c̄5
a2b4c2~12b2r 2s2!

$b2~11p2s2!1a2p2~11c2p2s2!%

6 (12)
e-
with

a25I av2L2/GJ
b25mv2L4/EI
c2512mxa

2/I a5I G /I a

p25PL2/EI
r 25I /AL2

s25EI/kAGL2

6 (13)

whereI G is the polar mass moment of inertia per unit length ab
an axis through the centroid.

A detailed numerical study carried out by the author has sho
that for a wide range of physical~engineering! problems, the co-
efficients ā, b̄, and c̄ are always positive so that the solution
the differential Eq.~10! is ~@10#!

W~j!5C1* coshaj1C2* sinhaj1C3* cosbj1C4* sinbj

1C5* cosgj1C6* singj (14)
ut

wn

f

whereC1* –C6* are constants and

a5@2~q/3!1/2 cos~f/3!2ā/3#1/2

b5@2~q/3!1/2 cos$~p2f!/3%1ā/3#1/2

g5@2~q/3!1/2 cos$~p1f!/3%1ā/3#1/2
J (15)

with

q5b̄1ā2/3

f5cos21@~27c̄29āb̄22ā3!/$2~ ā213b̄!3/2%#.
J (16)

Equation~14! represents the solution for the bending displac
ment H(j), bending rotationQ~j!, and torsional rotationC~j!.
Thus

H~j!5A1 coshaj1A2 sinhaj1A3 cosbj1A4 sinbj

1A5 cosgj1A6 singj (17)

Q~j!5B1 sinhaj1B2 coshaj1B3 sinbj1B4 cosbj

1B5 singj1B6 cosgj (18)
Transactions of the ASME
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C~j!5C1 coshaj1C2 sinhaj1C3 cosbj1C4 sinbj

1C5 cosgj1C6 singj (19)

whereA12A6 , B12B6 , andC12C6 are the three different set
of constants.

Substituting Eqs.~17! and ~18! into Eq. ~5! shows that

B15~ ā/L !A1 ; B352~ b̄/L !A3 ; B552~ ḡ/L !A5

B25~ ā/L !A2 ; B45~ b̄/L !A4 ; B65~ ḡ/L !A6
J

(20)

where

ā5a/~12b2r 2s22a2s2!

b̄5b/~12b2r 2s21b2s2!

ḡ5g/~12b2r 2s21g2s2!
J (21)

Then substituting Eqs.~17! and ~19! into Eq. ~7! gives

C15~ka /xa!A1 ; C35~kb /xa!A3 ; C55~kg /xa!A5

C25~ka /xa!A2 ; C45~kb /xa!A4 ; C65~kg /xa!A6
J (22)

where

ka5a2~12c2!~b21p2a2!/$a2~b21p2a2!1b2a2%
kb5a2~12c2!~b22p2b2!/$a2~b22p2b2!2b2b2%
kg5a2~12c2!~b22p2g2!/$a2~b22p2g2!2b2g2%.

J (23)

The expressions for the bending momentM (j), the shear force
S(j), and the torqueT(j) are obtained from Eqs.~17!–~19!, after
some simplification, as~@13#!

M ~j!52~EI/L !
dQ

dj

52~EI/L2!$A1aā coshaj1A2aā sinhaj

2A3bb̄ cosbj2A4bb̄ sinbj2A5gḡ cosgj

2A6gḡ singj% (24)
y

Journal of Applied Mechanics
S~j!5~EI/L3!FL
d2Q

dj2 2p2S dH

dj
2xa

dC

dj D1b2r 2QLG
5~EI/L3!$A1āga sinhaj1A2āga coshaj1A3b̄gb sinbj

2A4b̄gb cosbj1A5ḡgg singj2A6ḡgg cosgj% (25)

and

T~j!5~GJ/L !F ~11p2a2/b2!
dC

dj
2$p2a2~12c2!/~xab2!%

dH

dj G
5~GJ/L !$A1~aea /xa!sinhaz1A2~aea /xa!coshaj

2A3~beb /xa!sinbj1A4~beb /xa!cosbj

2A5~geg /xa!singj1A6~geg /xa!cosgj% (26)

where

ga5a21b2r 22p2~12ka!a/ā

gb5b22b2r 21p2~12kb!b/b̄
gg5g22b2r 21p2~12kg!g/ḡ

J (27)

and

ea5~11a2p2/b2!ka2a2p2~12c2!/b2

eb5~11a2p2/b2!kb2a2p2~12c2!/b2

eg5~11a2p2/b2!kg2a2p2~12c2!/b2.
J (28)

2.1 Frequency Equation. The end conditions for the canti
lever beam are as follows:

at the built-in end~j50!: H50, Q50, and C50
(29)

at the free end~j51!: S50, M50, and T50. (30)

Substituting Eq.~29! in Eqs.~17!–~19!, and~30! in Eqs.~24!–
~26! gives
3
1 0 1 0 1 0

0 ā 0 b̄ 0 ḡ

ka 0 kb 0 kg 0

2āgaSha 2āgaCha 2b̄gbSb b̄gbCb 2ḡggSg ḡggCg

aāCha aāSha 2bb̄Cb 2bb̄Sb 2gḡCg 2gḡSg

aeaSha aeaCha 2bebSb bebCb 2gegSg gegCg

4F
A1

A2

A3

A4

A5

A6

G 50 (31)
-

ur-
where

Cha5cosha; Cb5cosb; Cg5cosg

Sha5sinha; Sb5sinb; Sg5sing. (32)

Equation~31! may be written in matrix form as

BA50. (33)

The necessary and sufficient condition for nonzero element
the column vectorA of Eq. ~31! is thatD5uBu shall be zero, and
the vanishing ofD determines the natural frequencies of the s
tem in the usual way. Thus the frequency equation for the ca
lever can be obtained for the nontrivial solution as

D5uBu50. (34)

Expanding the 636 determinantD of B algebraically is quite a
formidable task, but became feasible with the recent advance
symbolic computing. Thus most of the work reported here, w
s in

s-
nti-

s in
as

carried out using the software REDUCE~@15#! in expanding the
determinantuBu, and more importantly in simplifying the expres
sion for D. The final expression obtained forD is given below
which is not necessarily in the shortest possible form, but is s
prisingly concise.

D5lCbCgCha2j1Cg~z11h1SbSha!2j2Cha~z21h2SbSg!

2j3Cb~z31h3SgSha! (35)

where

j15āb̄; j25b̄ḡ; j35ḡā (36)

m15ka2kb ; m25kb2kg ; m35kg2ka (37)

n15ab̄eagb1bāebga ; n25bḡebgg2gb̄eggb ;

n35gāegga1aḡeagg (38)
JUNE 2000, Vol. 67 Õ 309
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h15am3n22bm2n3 ; h25bm1n32gm3n1 ;

h35gm2n11am1n2 (39)

z15am2n31bm3n2 ; z25bm3n12gm1n3 ;

z35gm1n22am2n1 (40)

and

l5aā2m2n21bb̄2m3n32gḡ2m1n1 (41)

with a, b, g; ā, b̄, ḡ; ka , kb , kg ; ga , gb , gg ; ea , eb , eg ; and
Cha , Cb , Cg , Sha , Sb , Sg already defined in Eqs.~15!, ~21!,
~23!, ~27!, ~28!, and~32!, respectively. Note that it can be readi
verified with the help of Eqs.~13!–~16! and~23! that the value of

Table 1 Material properties and other data used in the free
vibration analysis of an axially loaded bending-torsion coupled
Timoshenko beam „†8,13‡…

Beam Parameter Numerical Value

E ~N/m2! 68.93109

G ~N/m2! 26.53109

r ~kg/m3! 2711
A ~m2! 3.0831024

I ~m4! 9.2631028

k 0.5
EI ~Nm2! 6380
GJ ~Nm2! 43.46
kAG ~N! 4.0813106

m ~kg/m! 0.835
I a ~kgm! 0.50131023

xa ~m! 0.155
L ~m! 0.82
P ~N! 1790
p2 0.1886
r 2 0.000447
s2 0.00233
310 Õ Vol. 67, JUNE 2000
y

the determinantD5uBu is zero when the frequency~v! is zero.
This known value ofD5uBu50 atv50 ~which corresponds to a
beam with no inertial loading, i.e., at rest!, can be always used to
avoid any numerical problem of overflow at zero frequency wh
computing the value ofD. Thus for any other~nontrivial! values
of v, the expression forD given by Eq. ~35! can be used in
locating the natural frequencies by successively tracking
changes of its sign.

2.2 Mode Shapes. Once the natural frequenciesvn are
found from Eq.~35!, the modal vectorA ~in which one element
may be fixed arbitrarily! is found in the usual way, namely b
deleting one row of the 6th order matrix of Eq.~31! and solving
for the five remaining constants in terms of the arbitrarily chos
one.

Thus, if A1 is chosen to be the one in terms of which th
remaining constantsA22A6 are to be expressed, as in the prese
case, the matrix Eq.~31!, will take the following reduced order
form. ~Note that terms relating toA1 are taken to the right-hand
side.!

F 0 1 0 1 0

ā 0 b̄ 0 ḡ

0 kb 0 kg 0

2āgaCha 2b̄gbSb b̄gbCb 2ḡggSg ḡggCg

aāSha 2bb̄Cb 2bb̄Sb 2gḡCg 2gḡSg

G
3F A2

A3

A4

A5

A6

G5F 21
0

2ka

āgaSha

2aāCha

G A1 (42)

The symbolic computing package REDUCE~@15#! was further
used to solve the above system of equations giving the follow
mode shape coefficients in terms ofA1
A25A1@b̄ḡ~k22aām2«2Cha1ām2d2gaSha2s2CbCg1t2SbSg!/x#
A35A1@m3 /m2#

A45A1@ ḡā~k31bb̄m3«3Cb1b̄m3d3gbSb1s3CgCha1t3SgSha!/x#
A55A1@m1 /m2#

A65A1@āb̄~k12gḡm1«1Cg2ḡm1d1ggSg1s1CbCha2t1SbSha!/x#
6 (43)
wherem1 , m2 , andm3 have already been defined in Eq
~37! and the following further variables are introduced
compute the parameters within the square brackets.

«15gaCha1gbCb ; «25gbCb2ggCg ; «35ggCg1gaCha

(44)
s.
to

d15aSha1bSb ; d25bSb2gSg ; d35gSg1aSha
(45)

t15ab̄m3gb1bāgam2 ; t25bḡm1gg2gb̄gbm3 ;

t35gām2ga1ḡam1gg (46)
Table 2 Natural frequencies of an axially bending-torsion coupled Timoshenko beam „†8,13‡…
with cantilever end condition.

Natural Frequency~rad/s!

Frequency
Number

P50(p250) P51790N (p250.1886) P521790N (p2520.1886)

r 25s250 r 2Þ0, s2Þ0 r 25s250 r 2Þ0, s2Þ0 r 25s250 r 2Þ0, s2Þ0

1 393.4 391.7 407.4 405.8 378.5 376.8
2 818.0 816.0 828.6 826.7 806.9 805.1
3 1641 1629 1661 1649 1621 1609
4 2648 2632 2634 2668 2611 2595
Transactions of the ASME



Fig. 2 „a… Variation of D with frequency „v… for the case when p 2Är 2Äs 2Ä0; „b… variation of D with frequency „v… for the case
when p 2Ä0.1886, r 2Ä0.000447, and s 2Ä0.00233; „c… variation of D with frequency „v… for the case when p 2ÄÀ0.1886, r 2

Ä0.000447, and s 2Ä0.00233
Journal of Applied Mechanics JUNE 2000, Vol. 67 Õ 311
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s15aām2gb2bb̄m3ga ; s25bb̄m3gg2gḡm1gb ;

s35gḡm1ga2aām2gg (47)

k15aām2ga2bb̄m3gb ; k25bb̄m3gb2gḡm1gg ;

k35gḡm1gg2aām2ga (48)

and

x5āb̄ḡm2~a«2Sha2b«3Sb1g«1Sg!. (49)

Note thata, b, g; ā, b̄, ḡ; ka , kb , kg ; ga , gb , gg ; Cha ,
Sha , Cb , Sb , Cg , andSg appearing in Eqs.~37!, and~43!–~49!
must be calculated for the particular natural frequencyvn at
which the mode shape is required.

Thus the mode shape of the bending-torsion coupled beam
cantilever end condition is given in explicit form by rewritin
Eqs. ~17!–~19! with the help of Eqs.~20!–~23! and ~43! in the
form

H~j!5A1~coshaj1R1 sinhaj1R2 cosbj1R3 sinbj

1R4 cosgj1R5 singj! (50)

Q~j!5A1~ ā sinhaj1āR1 coshaj2b̄R2 sinbj1b̄R3 cosbj

2ḡR4 singj1ḡR5 cosgj!/L (51)

C~j!5A1~ka coshaj1R1ka sinhaj1R2kb cosbj

1R3kb sinbj1R4kg cosgj1R5kg singj!/xa (52)

where the ratiosR1 , R2 , R3 , R4 , and R5 are, respectively,
A2 /A1 , A3 /A1 , A4 /A1 , A5 /A1 , and A6 /A1 , and follow from
Eqs.~43!.

In spite of the apparent complexity of the frequency and mo
shape equations given above, results for the degenerate case
bending-torsion coupled Timoshenko Beam and Bernoulli-Eu
beam can be obtained by substituting in the datap250 and p2

5r 25s250, respectively. Note that any one or more of the ter
p2, r 2, s2 which uniquely describe the effect ofaxial load, rota-
tory inertia, and shear deformation, respectively, can be set t
zero ~either individually or in any combination! to obtain the de-
generate cases.

3 Discussion of Results
An illustrative example on the application of the frequen

equation and mode shape expressions derived above is ch
from the existing literature~@8,13#!. It is a cantilever beam with
thin-walled semi-circular cross section, and for which substan
coupling between the bending and torsional modes of deforma
is prevalent. The material properties and other data used in
analysis are listed in Table 1.

The determinantD of the matrixB of Eq. ~31! was computed
both numerically and using the analytical expression of Eq.~35!,
for a range of frequencies. The two sets of results were foun
agree up to machine accuracy. The first four natural frequencie
the cantilever beam obtained fromD50, with and without the
inclusion of the effects of shear deformation and rotatory iner
are given in Table 2 for three different loading cases, nam
when the axial load is zero (P50), tensile (P51790) and com-
pressive (P521790), respectively. Note that forP561790 N,
the value of the nondimensional parameterp2 ~see Eq.~13!! is
close to60.1886. The frequencies given in Table 2 agreed co
pletely with published results, i.e., with those obtained using
exact dynamic stiffness theories of Friberg@8# and Banerjee and
Williams @13#. The plot ofD against frequency~v! which identi-
fies the first two natural frequencies of the beam is illustrated
Figs. 2~a!, 2~b! and 2~c!, respectively, for three representativ
cases when~a! p25r 25s250, ~b! p250.1886, r 250.000447,
s250.00233 and~c! p2520.1886,r 250.000447,s250.00233.
312 Õ Vol. 67, JUNE 2000
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The corresponding mode shapes were computed by using the
lytical expressions of Eqs.~50!–~52!. These were checked to ma
chine accuracy by solving the system of Eqs. in~42! numerically,
i.e., by using the computational steps of matrix inversion a
multiplication. Further checks on the mode shapes were also
formed by applying the exact dynamic stiffness theories of Fr
erg@8# and Banerjee and Williams@13# and again complete agree
ment was found in all cases. For illustrative purposes the first f
modes of the beam are shown in Fig. 3 for the case whenp2

50.1886,r 250.000447, ands250.00233. In order to be consis
tent with the unit used for the bending displacement~H! and also
to make the results more meaningful, the torsional rotation~C!
was multiplied byxa ~i.e., the distance between the mass cen
and shear center! when plotting the modes.~Note thatxaC rep-
resents the vertical displacement of the mass center relative to
shear center as a result of the twisting action.! Figure 3 shows that
there is substantial coupling between the bending displacem
and torsional rotation in all the four modes.

In order to demonstrate the substantial computational advan
of the proposed method, the determinantD was computed both
numerically and analytically~whenp2Þ0, s2Þ0, andr 2Þ0! for a

Fig. 3 The first four natural frequencies and mode shapes of
an axially loaded bending-torsion coupled Timoshenko beam
„†8,13‡… with cantilever end condition for the case when p 2

Ä0.1886, r 2Ä0.000447, and s 2Ä0.00233
Transactions of the ASME
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large number of iterations, each performed at a different
quency. The recorded elapsed c.p.u. time on a SUN~Ultra-2!
work station is shown in Table 3. It is clearly evident that pr
gramming the explicit expression forD has more than a fourfold
advantage over the numerical method.

4 Conclusions
Exact frequency equation and mode shape expressions fo

axially loaded bending-torsion coupled Timoshenko beam w
cantilever end condition have been derived using the symb
computing package REDUCE. The correctness of the express
has been checked by numerical results which agree comple
with exact published results. The expressions developed ca
used to solve bench mark problems as an aid in validating
finite element and other approximate methods. Applications of
theory include further developments in aeroelastic and optim
tion studies. Programming the explicit expressions has a subs
tial advantage in c.p.u. time over numerical methods, and a typ
gain of fourfold computational efficiency is demonstrated.

Table 3 C.P.U. time on a SUN „Ultra-2 … computer using Fortran

Number of Iterations C.P.U. Time~s!
~Number of Frequencies! Numerical Method Explicit Expression

500 0.048 0.012
1000 0.092 0.023
2500 0.234 0.058
5000 0.474 0.116
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Vibration Characteristics of
Conical Shell Panels With
Three-Dimensional Flexibility
A first known investigation on the three-dimensional vibration characteristics of con
shell panels is reported. A linear frequency equation is derived based on an exact t
dimensional, small-strain, linearly elastic theory. Sets of one and two-dimensional
nomial series are employed to approximate the spatial displacements of the conica
panels in three dimension. The perturbation of frequency responses due to the vari
of relative thicknessL/h, slanted lengthL/S, vertex anglegv , and subtended anglego is
investigated. First known frequency parameters and three-dimensional deformed
shapes of the conical shell panels are presented in vivid graphical forms. The new r
may serve as benchmark references for validating the new refined shell theories an
computational techniques.@S0021-8936~00!02302-3#
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Introduction
Conical shell panels are customarily used structural com

nents in aerospace, nuclear, mechanical, and marine engine
applications. A proper understanding of the vibration characte
tics of these shell panels is important before optimum design
cedures can be planned. Despite the practical importance of t
structural elements, researches carried out on this topic are
tively scarce. This subject is discussed at length in a monogr
by Leissa@1# and Librescu@2# and follows by a review article by
Liew et al. @3#.

Since Love@4# introduced his shell theory in the last centur
researchers have not exhausted searching for more reliable
dimensional theories through application of reduction methods
plied to three-dimensional elasticity~@5,6#!. Although these two-
dimensional theories are able to provide solutions for most s
problems, they may not be able to bring out the physical cha
teristics of shells. Models based on three-dimensional theory
tract a full vibration spectrum without missing modes which a
due to surface parallel vibratory motions. Three-dimensional e
ticity solutions thus provide a real basis for assessing the solut
of two-dimensional theories. Some of the recent literatures
three-dimensional vibration analysis of shells are due to Hutc
son @7,8# Leissa and So@9,10#, Liew and Hung@11#, Liew et al.
@12,13#, and So and Leissa@14#.

The above studies examined only the closed shell proble
This paper is a complement to the earlier works by providin
comprehensive study on the free vibration characteristics of c
cal shell panels~open shells! from three-dimensional analysis
The solution to this problem is made possible by using the R
method with sets of two-dimensional surface functions and o
dimensional thickness functions assumed in orthogonal polyno
als. In this study, vibration behaviors of conical shell panels d
to the variations of relative thicknessL/h, slanted lengthL/S,
vertex anglegv , and subtended anglego are investigated.

1This work was carried out during the author’s sabbatical at the Departmen
Mechanical Engineering, Massachusetts Institute of Technology.

2Present address: Department of Mechanical and Aerospace Engineering, U
sity of Missouri—Columbia, Columbia, MO 65211.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
4, 1998; final revision, October 21, 1999. Associate Technical Editor: A. Ferri. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Problem Definition

Figure 1 shows the geometric configuration of a homogeneo
isotropic, truncated conical shell panel with slanted lengthL,
thicknessh, vertex anglegv , and subtended anglego . S denotes
the slanted length of the cone from the vertex to the base.
displacement components of the conical shell panel are define
a cylindrical coordinate system~r,u,z!. For the conical shell, there
is no curvature along the spanwise direction. In the chordw
direction, however, the radius at the midsurfaceRm(z) is a func-
tion varying with respect to thez-direction. The displacemen
components at a generic point areu1 , u2 , andu3 in the radial,
circumferential, and vertical directions with respect to the po
cylindrical reference frame. In this study, the conical shell pan
treated are confined to cantilevered~CFFF! and fully clamped
~CCCC! boundary conditions. For the CFFF shell panel, t
clamped edge is located atz50 which corresponds to the base
the cone. The vibration characteristics of the CFFF and CC
shell panels are to be investigated.

t of

iver-

il
is-
is T.

on,
heFig. 1 Geometry and dimensions of a truncated conical shell
panel
00 by ASME Transactions of the ASME
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Mathematical Formulations

The linear elastic strain energy componentV̂ for a shell panel in
cylindrical coordinates can be written in an integral form as

V̂5ÊE
Vol

@~12n!Â112nÂ21~122n!Â3#r dr du dz (1)

where

Ê5
E

2~11n!~122n!
(2)

Â15« rr
2 1«uu

2 1«zz
2 (3)

Â25« rr «zz1« rr «uu1«uu«zz (4)

Â35« ru
2 1« rz

2 1«uz
2 (5)

and Vol is the volume,E is Young’s modulus,n is Poisson’s ratio,
and the strain components in cylindrical polar coordinate for sm
deformation are given as

« rr 5
]ur

]r
(6)

«uu5
ur

r
1

]uu

r ]u
(7)

«zz5
]uz

]z
(8)

« ru5
]ur

r ]u
1

]uu

]r
2

uu

r
(9)

« rz5
]ur

]z
1

]uz

]r
(10)

«uz5
]uu

]z
1

]uz

r ]u
. (11)

For free vibration analysis, the kinetic energyT̂ can be ex-
pressed as

T̂5 r̂E
Vol

@ u̇r
21u̇u

21u̇z
2#r dr du dz (12)

u̇r5
]ur

]t
; u̇u5

]uu

]t
; u̇z5

]uz

]t
; r̂5

r

2
(13)

wherer is the mass density per unit volume, andt is time.
For linear, small-strain, simple harmonic motion, the displa

ment components assume the following forms:

ua~r ,u,z,t !5Ua~r ,u,z!eivt; a51,2,3 (14)

wherev denotes the frequency of vibration.
For generality and simplicity in the subsequent derivations,

cylindrical coordinates~r,u,z! are transformed into a set of nond
mensional parameters (x̄1 ,x̄2 ,x̄3) by the following relations:

r 5
1

2
$@r o~ x̄3!1r i~ x̄3!#2@r o~ x̄3!2r i~ x̄3!# x̄1% (15)

u5
1

2
gox̄2 (16)

z5 x̄3L cosĝv (17)

in which ĝv5gv/2.
The conical shell panel may be considered of consisting

multiple layers of sectorial slices of infinitesimal thickness. In th
study, the volume integrals in the strain and kinetic energies
therefore treated as a summation of the energy contribution
Journal of Applied Mechanics
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each sectorial slice. At an arbitrary distancex̄3 , the midsurface
radius of curvatureRm( x̄3) of a sectorial slice can be approx
mated by

Rm~ x̄3!5L sin ĝv~Ŝ2 x̄3! (18)

in which Ŝ5S/L. The corresponding inner and outer radii can
written as

r i~ x̄3!5Rm~ x̄3!2ĥ (19)

r o~ x̄3!5Rm~ x̄3!1ĥ (20)

in which ĥ5h/2.
The nondimensional displacement trial functions are assum

as

Ua~ x̄1 ,x̄2 ,x̄3!5 (
m51

M

(
n51

N

Cmn
a fm

a ~ x̄1 ,x̄2!cn
a~ x̄3! (21)

in which ^a51,2,3&, Cmn
a are the unknown coefficients, an

fm
a ( x̄1 ,x̄2) andCn

a( x̄3) are the one and two-dimensional orthog
nal polynomial functions.

Let P̂ be the energy functional given by

P̂5Ṽ2T̃ (22)

whereṼ andT̃ are the maximum strain and kinetic energies whi
can be derived by substituting Eq.~21! into the respective energy
expressions in Eqs.~1! and ~12! with the periodic componen
eliminated.

The minimization ofP̂ with respect to the coefficients

]P̂

]Cmn
a 50; a51,2,3 (23)

leads to the governing eigenvalue equation of the form

~K̂2l̂2M̂ !Ĉ50 (24)

where

K̂5F k̂11 k̂12 k̂12

k̂22 k̂23

Sym k̂33
G (25)

M̂5F m̂11 0 0

m̂22 0

Sym m̂33
G (26)

and

Ĉ5$C1 C2 C3%T. (27)

The explicit forms of the respective elements in the stiffne
submatricesk̂ab are given by

k̂m jnk
11 5

~12n!

L̃1

F 4

h2
~ Îm jnk

101000;1!111~ Îm jnk
000000;21!11G

1
2n

L̃1h
@~ Îm jnk

001000;0!111~ Îm jnk
100000;0!11#

1
4

L̃2

F 1

h2
~ Îm jnk

010100;1!111
1

go
2

~ Îm jnk
010100;21!11G (28)
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k̂m jnk
12 5

2~12n!

L̃1go

~ Îm jnk
000100;21!121

4n

L̃1goh
~ Îm jnk

100100;0!12

1
2

L̃2go

F2

h
~ Îm jnk

010010;0!122~ Îm jnk
010000;21!12G (29)

k̂m jnk
13 5

n

L̃1b̂
F2

h
~ Îm jnk

100001;1!131~ Îm jnk
000001;0!13G1

2

L̃2b̂h
~ Îm jnk

001010;1!13

(30)

k̂m jnk
22 5

4~12n!

L̃1go
2

~ Îm jnk
010100;21!221

1

L̃2

H 4

h2
@~ Îm jnk

100010;1!22

1~ Îm jnk
001001;1!22#J 1

2

h
@~ Îm jnk

000010;0!221~ Îm jnk
100000;0!22#

(31)

k̂m jnk
23 5

2n

L̃1gob̂
~ Îm jnk

010001;0!231
2

L̃2gob̂
~ Îm jnk

001100;0!23 (32)

k̂m jnk
33 5

~12n!

L̃1b̂2
~ Îm jnk

001001;1!331
4

L̃2

F 1

h2
~ Îm jnk

100010;1!33

1
1

go
2

~ Îm jnk
010100;21!33G (33)

and the elements in the mass submatrixm̂ab are given by

m̂m jnk
11 5E

21

1 E
21

1 E
0

1

@q̂~ x̄1 ,x̄3!F̂1~ x̄1 ,x̄2 ,x̄3!

3Ĉ1~ x̄1 ,x̄2 ,x̄3!#dx̄1dx̄2dx̄3 (34)

m̂m jnk
22 5E

21

1 E
21

1 E
0

1

@q̂~ x̄1 ,x̄3!F̂2~ x̄1 ,x̄2 ,x̄3!

3Ĉ2~ x̄1 ,x̄2 ,x̄3!#dx̄1dx̄2dx̄3 (35)

m̂m jnk
33 5E

21

1 E
21

1 E
0

1

@q̂~ x̄1 ,x̄3!F̂3~ x̄1 ,x̄2 ,x̄3!

3Ĉ3~ x̄1 ,x̄2 ,x̄3!#dx̄1dx̄2dx̄3 (36)

where

L̃15
1

2
~122n!L̃2 (37)

L̃252~11n! (38)

q̂~ x̄1 ,x̄3!5
1

2
$~r o~ x̄3!1r i~ x̄3!!2~r o~ x̄3!2r i~ x̄3!!x̄1% (39)

b̂5L cosĝn (40)

and

~ Îm j
de f grs;Z!ab5E

21

1 E
21

1 E
0

1

F̂~ x̄1 ,x̄2 ,x̄3!Ĉ~ x̄1 ,x̄2 ,x̄3!

3q̂~ x̄1 ,x̄3!r o~ x̄3!dx̄1dx̄2dx̄3 (41)

F̂~ x̄1 ,x̄2 ,x̄3!5
]d1e1rfm

a ~ x̄1 ,x̄2!c j
a~ x̄3!

] x̄1
d] x̄2

e] x̄3
r (42)
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Ĉ~ x̄1 ,x̄2 ,x̄3!5
] f 1g1sfn

a~ x̄1 ,x̄2!ck
a~ x̄3!

] x̄1
f ] x̄2

g] x̄3
s (43)

in which ^a51,2,3& and ^b51,2,3&.
The eigenvalues obtained from Eq.~24! are defined in terms of

nondimensionalized frequency parameterl of the form

l5vLAr

E
. (44)

Admissible Displacement Functions
The admissible functions adopted in Eq.~21! are sets of one

cn
a( x̄3) and two-dimensionalfm

a ( x̄1 ,x̄2) orthogonal polynomial
functions. Details of these orthogonal polynomial functions can
found in Liew et al.@15,16#. To be able to use the procedure
~@15,16#!, we first need to derive the basic functions that are g
erned by the boundary conditions of the conical shell panels.

The two-dimensional functionsfm
a ( x̄1 ,x̄2) approximate the dis-

placement variations of the conical shell panel in the radial a
circumferential directions. The general form of the functions m
be written as

f1
a~ x̄1 ,x̄2!5~ x̄2!Q̂1

a
~ x̄221!Q̂2

a
(45)

and

Q̂ i
a5H 0 if the i th edge is free~F !

1 if the i th edge is clamped~C!
(46)

in which ^a51,2,3&.
The one-dimensional functionscn

a( x̄3) approximate the varia-
tions of the conical shell panel in the spanwise direction. T
general form of the basic functions may be defined as

c1
a~ x̄3!5~ x̄321!Q̂1

a
~ x̄311!Q̂2

a
(47)

andQ̂ i
a follows the definition given in Eq.~46!.

Results and Discussion
The above procedures are applied to extract the vibration

quencies and mode shapes of conical shell panels with CFFF
CCCC boundary conditions subject to variation of geometric
rameters. For both cases, the vibration modes can be conveni
divided into the symmetry~S! and antisymmetry~A! classes with
respect to thex̄1x̄3 plane atx̄250.

Table 1 shows the convergence of conical shell panel of dif
ent configurations by varying the number of terms used in
displacement fields. The number of termsN used in the one-
dimensional polynomial functions, and the order of polynomiaP
of the two-dimensional functions have been increased stea
The shell chosen has a vertex anglegv530 deg and chordwise
subtended anglego515 deg. The slanted lengthsL/S of the shell
are fixed at 0.10 and the relative thicknessL/h is fixed at 8.0,
which corresponds to a moderately thick shell. In general, sa
factory converged solutions are obtained whenP55 andN58
for both shells.

The present formulation is validated by direct comparison w
the existing solutions. A clamped conical thin shell studied
Srinivasan and Krishnan@17# and Cheung et al.@18# from two
different approaches is selected for this comparison purpose.
quency parameters for the clamped conical shell with vertex an
gv560 deg, chordwise subtended anglego560 deg, slanted
lengthL/S50.60, and thickness ratioL/h5100 are obtained from
the present method. Table 2 shows the comparison of the auth
solutions with the classical thin shell solutions of Srinivasan a
Krishnan@17#, and Cheung et al.@18#. The frequency parameter
computed are expressed in terms of the nondimensional form@18#
l̃ that is related tol of Eq. ~44! by
Transactions of the ASME
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Table 1 Convergence of l for conical shell panels with CFFF and CCCC boundary conditions
„gvÄ30 deg, goÄ15 deg, L ÕSÄ0.10 and L ÕhÄ8…

Boundary Terms
Mode Sequences

Condition (P,N) S-1 S-2 S-3 A-1 A-2 A-3

CFFF ~4, 3! 0.14833 0.94792 2.0672 0.44400 0.57134 1.7945
~5, 4! 0.14655 0.83845 1.6806 0.44185 0.56875 1.4018
~6, 4! 0.14654 0.83843 1.6803 0.44184 0.56874 1.4018
~5, 5! 0.14485 0.82264 1.6774 0.43887 0.56736 1.3867
~5, 6! 0.14457 0.81392 1.6764 0.43802 0.56688 1.3776
~5, 7! 0.14421 0.81303 1.6757 0.43715 0.56650 1.3763
~5, 8! 0.14417 0.81298 1.6755 0.43712 0.56647 1.3760

CCCC ~4, 3! 2.0045 3.4669 4.5107 4.0300 5.0389 5.4092
~5, 4! 1.9994 2.9070 4.4921 4.0193 4.7324 5.3974
~6, 4! 1.9994 2.9069 4.4921 4.0192 4.7322 5.3973
~5, 5! 1.9960 2.8868 4.2874 4.0168 4.7224 5.3949
~5, 6! 1.9948 2.8755 4.2031 4.0159 4.7173 5.3944
~5, 7! 1.9941 2.8736 4.1866 4.0154 4.7157 5.3939
~5, 8! 1.9940 2.8734 4.1862 4.0153 4.7155 5.3939
o

lu-
ted
ree-
us-
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od

nd the

-

di-
s 4
,
ss

9

l̃5
lL

h
A12~12n2!. (48)

From Table 2, it is evident that the present predictions are in g
agreement with their results. Both thin shell solutions of Cheu
et al.@18# and Srinivasan and Krishnan@17# are formulated based
on Donnell’s shell theory. This comparison shows that the pres

Table 2 Comparison of l̃ for a CCCC shell panel „L ÕSÄ0.60,
gvÄ60 deg, goÄ60 deg, and L ÕhÄ100…

Source of Results

Mode Sequences

1 ~A-1! 2 ~S-1! 3 ~A-2! 4 ~S-2!

Srinivasan and Krishnan@17# 202.7 260.1 305.6 355.0
Cheung et al.@18# 213.4 262.5 314.7 358.6
Present Three-Dimensional Solutions 210.9 258.5 307.5 34
ied Mechanics
od
ng

ent

formulation is capable of producing comparable frequency so
tions to conical shell problems even with a highly degenera
thickness. Table 3 shows a comparison study of the present th
dimensional results with the finite element solutions obtained
ing the eight-node three-dimensional elements of MS
NASTRAN commercial package. It is again shown that a go
agreement has been achieved between the present results a
finite element solutions.

Frequency parametersl for conical shell panels with cantile
vered~CFFF! and fully clamped~CCCC! boundary conditions are
presented in Tables 4–7. The effects of relative thicknessL/h,
slanted lengthL/S, vertex anglegv , and subtended anglego upon
the variations ofl are investigated. The frequency parameterl is
independent of shell thicknessh; hence throughl, the physical
vibration frequencies for different conical shell panels can be
rectly compared. The results for CFFF shell panels in Table
and 5 possess subtended anglego of 15 deg, 30 deg, and 45 deg
and vertex anglegv of 30 deg and 60 deg. The relative thickne
.3
8

60
93
86
5
7
03
27
94
28
9
76
73
991
68
83
7
55
54
Table 3 Comparison of l for a thick CFFF shell panel „L ÕSÄ0.10, gvÄ30 deg, goÄ15 deg, and
L ÕhÄ8…

Source of Results

Mode Sequences

1 ~S-1! 2 ~A-1! 3 ~A-2! 4 ~S-2!

Present Three-Dimensional Solutions 0.14417 0.43712 0.56647 0.8129
Three-Dimensional MSC/NASTRAN 0.14496 0.43809 0.56654 0.82073

Table 4 Frequency parameters l for CFFF conical shell panels with gvÄ30 deg

go

L

S

L

h

Mode Sequences

S-1 S-2 S-3 A-1 A-2 A-3

15 deg 0.10 8 0.14417 0.81298 1.6755 0.43712 0.56647 1.37
16 0.075791 0.44332 1.0808 0.23528 0.56600 0.768
32 0.043111 0.24420 0.56295 0.12125 0.40160 0.565

0.20 8 0.14604 0.81251 1.7120 0.33080 0.73009 1.475
16 0.074748 0.43694 1.1717 0.33124 0.43269 1.287
32 0.038971 0.22974 0.62587 0.23001 0.33183 0.693

30 deg 0.10 8 0.16369 0.66258 0.85706 0.27641 0.78452 1.00
16 0.10755 0.35358 0.49651 0.14579 0.55279 0.780
32 0.084792 0.18665 0.31022 0.077593 0.29958 0.405

0.20 8 0.15287 0.83321 1.7148 0.46869 0.56462 1.440
16 0.086977 0.47869 1.2003 0.25422 0.56388 0.810
32 0.058916 0.30194 0.65110 0.13211 0.42789 0.563

45 deg 0.10 8 0.19938 0.41197 0.86616 0.22264 0.74607 0.86
16 0.14608 0.23538 0.51406 0.12389 0.39808 0.524
32 0.093309 0.17571 0.30617 0.077493 0.20871 0.304

0.20 8 0.17379 0.86662 1.1736 0.35847 0.70568 1.170
16 0.12075 0.53669 0.64588 0.19170 0.65500 0.705
32 0.10140 0.31472 0.40459 0.10245 0.36038 0.704
JUNE 2000, Vol. 67 Õ 317
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2
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6
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2
1
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0
6
24

8
3
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Table 5 Frequency parameters l for CFFF conical shell panels with gvÄ60 deg

go

L

S

L

h

Mode Sequences

S-1 S-2 S-3 A-1 A-2 A-3

15 deg 0.10 8 0.18458 0.74001 1.0167 0.32454 0.89563 1.18
16 0.10209 0.39462 0.56021 0.17024 0.65458 0.858
32 0.065172 0.20321 0.30628 0.087596 0.34213 0.442

0.20 8 0.18481 1.0023 1.9133 0.54611 0.65935 1.675
16 0.096831 0.55151 1.3446 0.29734 0.65870 0.952
32 0.054134 0.30084 0.70554 0.15382 0.50084 0.658

30 deg 0.10 8 0.20873 0.36020 0.91205 0.23255 0.56694 1.02
16 0.13457 0.20147 0.49271 0.12705 0.30087 0.586
32 0.083869 0.14231 0.25432 0.076394 0.15873 0.317

0.20 8 0.20552 0.82890 1.0522 0.35093 0.90528 1.232
16 0.13130 0.44633 0.60897 0.18608 0.68779 0.904
32 0.10130 0.23491 0.37433 0.098633 0.37115 0.510

45 deg 0.10 8 0.22211 0.28689 0.53644 0.21779 0.37232 0.77
16 0.13262 0.19748 0.28690 0.12929 0.20582 0.414
32 0.079596 0.15372 0.17280 0.081014 0.13315 0.219

0.20 8 0.24410 0.51860 1.0591 0.28292 0.93294 1.001
16 0.17713 0.29238 0.62794 0.15635 0.50325 0.648
32 0.11729 0.20708 0.37573 0.095525 0.26344 0.372

Table 6 Frequency parameters l for CCCC conical shell panels with gvÄ30 deg

go

L

S

L

h

Mode Sequences

S-1 S-2 S-3 A-1 A-2 A-3

15 deg 0.10 8 1.9940 2.8734 4.1862 4.0153 4.7155 5.393
16 1.2094 1.7789 2.7015 2.6280 3.1349 3.9365
32 0.70598 1.0032 1.5195 1.4600 1.7681 2.2601

0.20 8 5.1331 5.7240 6.5523 9.8164 10.516 10.648
16 3.7132 4.1808 4.7901 7.9391 8.6151 9.2405
32 2.2615 2.5642 2.9457 5.2011 5.7173 6.1903

30 deg 0.10 8 1.0933 2.2181 2.5648 1.6526 2.6927 3.198
16 0.67133 1.3399 4.5272 0.95293 1.6328 2.2753
32 0.46059 0.77532 0.82508 0.52668 0.90587 1.235

0.20 8 2.2234 3.0562 4.3206 4.2298 4.9800 5.678
16 1.4512 1.9743 2.8469 2.8194 3.3825 4.1763
32 0.99124 1.2419 1.7008 1.5894 1.9464 2.4461

45 deg 0.10 8 0.96696 1.5655 2.1212 1.1610 2.1180 2.312
16 0.61017 0.89692 1.2819 0.67642 1.2274 1.392
32 0.42665 0.51575 0.75052 0.41370 0.65895 0.790

0.20 8 1.5211 2.5049 3.8964 2.4829 3.4046 4.083
16 1.0517 1.6133 2.5400 1.5164 2.1602 3.0837
32 0.82370 1.0745 1.4638 0.85521 1.2543 1.7945

Table 7 Frequency parameters l for CCCC conical shell panels with gvÄ60 deg

go

L

S

L

h

Mode Sequences

S-1 S-2 S-3 A-1 A-2 A-3

15 deg 0.10 8 1.2225 2.5873 2.7774 1.8342 3.0758 3.413
16 0.69804 1.5684 1.6673 1.0572 1.8902 2.4639
32 0.39506 0.85194 0.89125 0.56114 1.0256 1.341

0.20 8 2.3161 3.3666 4.8886 4.5450 5.4218 5.8944
16 1.4281 2.1343 3.2464 3.0497 3.7090 4.6666
32 0.82853 1.2087 1.8500 1.7195 2.1289 2.7336

30 deg 0.10 8 1.0527 1.3802 2.2953 1.1641 1.7004 2.565
16 0.60394 0.77995 1.3673 0.65967 0.96685 1.552
32 0.35374 0.41956 0.73156 0.36683 0.51133 0.842

0.20 8 1.2999 2.6317 2.9703 1.9434 3.1710 3.5285
16 0.79576 1.6226 1.8069 1.1394 1.9690 2.6627
32 0.53035 0.93284 0.98255 0.62874 1.0973 1.463

45 deg 0.10 8 1.2225 2.5873 2.7774 1.8342 3.0758 3.413
16 0.69803 1.5684 1.6673 1.0572 1.8902 2.4639
32 0.39505 0.85196 0.89124 0.56115 1.0256 1.341

0.20 8 2.3161 3.3666 4.8886 4.5450 5.4219 5.8944
16 1.4281 2.1343 3.2464 3.0497 3.7090 4.6666
32 0.82852 1.2088 1.8500 1.7195 2.1290 2.7336
f

i

tal

d

L/h of shell varies from 8, 16, and 32~which corresponds to
thick, moderately thick, and thin shells!. The slanted lengths o
shell L/S are fixed at 0.10 and 0.20 in the present study. T
frequency parameters for the fully clamped shell panels are g
in Tables 6 and 7.
JUNE 2000
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For the CFFF shell panels, it is noted that the fundamen
mode of vibration is dominated by the first symmetric mode~S-1!
followed by the first antisymmetric mode~A-1!. It is observed that
when the shell with a constant vertex anglegv and base subtende
anglego , l decreases as thickness ratioL/h increases. Since the
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Fig. 2 Mode shapes and frequency parameters of a cantilevered conical shell panel
„gvÄ30 deg, goÄ30 deg, L ÕSÄ0.20 and L ÕhÄ8…

Fig. 3 Mode shapes and frequency parameters of a fully clamped conical shell panel
„gvÄ30 deg, goÄ30 deg, L ÕSÄ0.20 and L ÕhÄ8…
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L/h ratio is inversely proportional to the physical thickness
shell, a higherL/h value corresponds to a thinner shell. As thinn
shells possess smaller bending and torsional stiffnesses, the
dicted frequency parameters inevitably reduce proportionally.
effects of vertex anglegv upon l of the shell panels can be ob
served directly by comparing Table 4 to Table 5. It is noticed t
for a shell panel of the same subtended anglego , slanted length
L/S and thickness ratioL/h, l increases withgv of the truncated
cone. The variation ofl with respect to the slanted lengthL/S for
the fully clamped shell panel is also examined~Tables 6 and 7!.
For this shell panel withgo530 deg and 60 deg, it is evident tha
l increases asL/S increases. It is also noted thatl increases as the
thicknessL/h increases.

The displacement contour plots and three-dimensional
formed geometries of the vibration mode shapes for both can
vered and fully clamped conical shell panels are depicted in F
2 and 3. The conical shells considered have vertex anglegv
Mechanics
of
er
pre-
he

-
at

t

de-
ile-
igs.

530 deg, subtended anglego530 deg, slanted lengthL/S
50.20, and relative thickness ratioL/h58. For the CFFF shell
panels, the first symmetric mode~S-1! shows prominent spanwis
bending motion. Torsional motion is found at the first antisy
metric mode~A-1!. The in-plane dominant vibration motions oc
cur at the fifth and sixth modes. For the CCCC shell panels ill
trated in Fig. 3, most of the modes presented exhibit out-of-pl
transverse bending motions. The only in-plane vibration mode
this case occurs at the third mode (l54.2298). This in-plane
mode is dominated by the in-plane shearing motion in the circu
ferential direction of the shell.

Concluding Remarks
The first known three-dimensional elasticity solutions for fr

vibrations of conical shell panels with cantilevered and clamp
boundary conditions were presented. A systematic formulation
the integral expressions for strain and kinetic energies in a cy
JUNE 2000, Vol. 67 Õ 319
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drical polar coordinate system was detailed. The thr
dimensional elasticity theory was adopted in this derivation t
allows the extracting of full vibration spectrum for the conic
shell panels. The solutions to the problem were obtained by
Ritz method with the use of one and two-dimensional orthogo
polynomial functions for the displacement fields. Convergen
and comparison studies were carried out to validate the accu
of the present formulation. Detailed parametric studies show
the influence of thickness ratio, vertex angle, subtended angle
slanted length on the vibration responses were presented. It
noted that the frequency parameters of transverse bending m
of conical shells, whether cantilevered or clamped, always
crease as the thickness increases. For the vibration modes w
are dominated by the in-plane motion, the changes in shell th
ness are found to have minor influence on the vibrat
frequencies.
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On the Dynamics of the Dynabee
TheDynabeeis a gyroscopic device that is marketed as a wrist exerciser. In this pa
a model for the dynamics of this device is presented. With some additional work, w
that the dynamics are governed by a single ordinary differential equation. The solutio
this equation also provides the moment required to operate the device. Specifical
find that this moment is proportional to the square of the rotor’s spin rate. We also s
why it is necessary to give the device a large initial spin rate for its successful opera
@S0021-8936~00!02602-7#
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1 Introduction
A unique hand-held gyroscope invented by Archie Mishler@1#

exhibits the intriguing phenomenon of rotor spin-up when an
dividual applies the appropriate torques to the supporting fram
the gyroscope. As described by Mishler, this ‘‘new gyrosco
device in which the rotor cannot only rotate about its spin axis
can also rotate about a second axis at right angles to the spin
and in which the rotor can be made to increase in speed by
plying a torque about a third axis,’’ became popular in the ea
1990s due to the marketing of a wrist and arm exerciser called
Dynabee™. Sold as both a therapeutic and strengthening dev
theDynabeeis held in the palm of one hand, the rotor is manua
given an initial spin, and then a coordinated motion of the w
and hand can increase the spin rate of the rotor to speeds
4000 rpm.

This paper is concerned with explaining the manner in wh
the spin rate approaches these high speeds. In addition, the
discusses the applied moment that is required to achieve this
tion. We will show that the magnitude of the moment is prop
tional to the spin rate squared, a feature which allows theDynabee
to be used as an wrist exerciser.

Our model is based on rigid-body dynamics. It can be cons
ered as an example of a nonholonomically constrained dynam
system. Reviews of, and further details on, works in this area
be found in Neimark and Fufaev@2#, Karapetyan and Rumyantse
@3#, and Zenkov, Bloch, and Marsden@4#.

2 Kinematics
In this section, we discuss the kinematics of the proposed

chanical model of theDynabee. This model contains the importan
physical characteristics necessary for spin-up to occur. Spe
cally, bases vectors and Euler angles are introduced to des
the rotations of two bodies: a circular track and a rotor. For
relevant background on parameterizations of rotation tensors
reader is referred to the review article by Shuster@5#.

The mechanical model is comprised of two rigid bodies, a tra
and a rotor, as illustrated in Fig. 1. The track is a circular race
groove that constrains the motion of the rotor, which is an a
symmetric body with a cylindrical axle along its axis of symm
try. With a semi-length ofRt and a radius ofRa , both ends of the
axle are constrained to remain within the track. The rotor’s m
ment of inertia about a vector parallel to the axle, referred to
the rotor’s spin-axis, isl1 . Due to a geometric symmetry, th
moment of inertia about any vector perpendicular to the spin a
is l2 .

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
1, 1999; final revision, Oct. 25, 1999. Associate Technical Editor: N. C. Perk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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We prescribe the rotational motion of the track such tha
body-fixed axis normal to the track’s plane precesses with a c
stant nutation angleu and a precessional rateċ. To describe the
rotation, we introduce a right-handed orthonormal basis« of an
inertial coordinate system comprised of the vectorsE1 , E2 and
E3 . Starting from a reference configuration where the norma
the track’s plane is aligned withE3 , the rotation of the track may
be specified by a 3-1-3~c, u, w! set of Euler angles, as shown i
Fig. 2. Since we desire that the outer shell have a purely pre
sional motion that does not involve the body revolving aboutE3 ,
the final angle of rotation isw52c. In the resulting motion, a
material point of the track returns to the same location after
full precessionwithout revolving aroundE3 .

We define a set of body-fixed vectors$et1 ,et2 ,et3% that form a
right-handed orthonormal basis«t which corotates with the track
Here,et1 andet2 lie in the plane that contains the track, whileet3
is normal to the track’s plane. Restricting the nutation angleu to
be constant, the angular velocity vector of the circular track is

vt5ċE32ċet3 (1)

where a dot over a variable denotes differentiation with respec
time.

Only two independent Euler angles are necessary to specify
current orientation of the rotor relative to the track, as viewed
Fig. 3. The first rotation, through an anglea, is aboutet3 , and
causes the axle to rotate around the track. Following this rotat
it is convenient to define a right-handed orthonormal ba
$e1 ,e2 ,e3% such thate1 is parallel to the axle ande3 is parallel to
et3 . Thus, the vectore2 lies in the plane spanned byet1 andet2 .
Note that this basis is neither corotational with the track nor co
tational with the rotor. For the second rotation, the rotor sp
about e1 through an angleg. Corotational with the rotor is the
right-handed orthonormal basis«r5$er1 ,er2 ,er3%. This basis is
oriented such thater1 is parallel to the rotor’s axle. Given the
relative rotation of the rotor, we use the methods of Casey
Lam @6# to calculate the angular velocity vector of the rotor re
tive to the trackv̂r ,t :

v̂r ,t5vr2vt5ġe11ȧe3 (2)

wherevr is the absolute angular velocity vector of the rotor.
In postulating constraints on the motion of the rotor, seve

conditions could exist at the contact point between the track
the rotor’s axle. These include frictionless sliding, sliding wi
friction, and rolling without sliding. We shall only consider th
last case because it is the only condition that presents a me
nism for spin-up of the rotor. Figure 4 shows the proposed type
contact between the rotor and the track. The axle contacts
track at a pointP on the track’s lower surface and at a pointQ on
the upper surface. In this configuration, the center of mass of
rotor remains coincident with the center of the track as the ro
rolls at both pointsP andQ.
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Introducing a right-handed orthonormal basis$ep1 ,ep2 ,ep3%, as
illustrated in Fig. 4, facilitates the analysis. Here,ep1 points from
the center of the rotor~point O! toward pointP such that the angle
b betweenep1 ande1 is

b5tan21S Ra

Rt
D . (3)

Furthermore,ep2 is parallel toe2 . Rolling atP andQ introduces
the following constraint equations:

~vr1vr3pP!2~vt1vt3pP!50,
(4)

~vr1vr3pQ!2~vt1vt3pQ!50,

wherevr is the velocity vector of the rotor’s center of mass,vt is
the velocity vector of the center of mass of the track, andpP and
pQ are the position vectors ofP and Q relative to the rotor’s
center of mass, respectively. Clearly,

pP52pQ . (5)

It follows that we can separate the constraint equations int
single vector equation for translation,

vr2vt50, (6)

Fig. 1 Schematic of the Dynabee . The precessional motion of
a vector normal to the circumferential track is also shown.

Fig. 2 The Euler angles and reference frames used to param-
eterize the precessional motion of the track
322 Õ Vol. 67, JUNE 2000
a

and another vector equation for rotation,

~vr2vt!3pP50. (7)

Equation~6! provides three scalar constraints that fully specify t
translational motion of the rotor. Throughout the remainder of
paper, we shall assume that the centers of mass of the track
rotor are coincident and stationary. Taking the dot products of~7!
with ep i ( i 51,2,3) yields two scalar constraint equations

C15~vr2vt!•ep250,
(8)

C25~vr2vt!•ep350.

The second constraint may be transformed into an algebraic
tionship between the various Euler angles by substituting for
relative angular velocity vector~from ~2!! and then integrating
over time. Allowing the initial values of the Euler angles to b
zero yields the algebraic relationship

g52za, (9)

wherez5Rt /Ra . Thus the rotor’s motion has been reduced to
problem with only one independent variable. In addition to red
ing the number of independent variables, the rotational constra
will be used to postulate appropriate constraint moments on
rotor.

Fig. 3 The Euler angles and reference frames used to param-
eterize the rotor’s rotation relative to the track

Fig. 4 Rolling contact between the rotor and track as viewed
from the negative e 2 direction
Transactions of the ASME
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3 Kinetics
In our model, we assume that the net moment applied to

rotor, M r , is the sum of two moments: a constraint moment d
to the track-rotor contact, denoted asM r c

, and a dissipative mo-
mentM r d

. Hence

M r5M r c
1M r d

. (10)

Using a normality prescription~@7,8#!, the constraint moment on
the rotor~relative to the rotor’s center of mass! is

M r c
5k2ep21k3ep3 (11)

where k2 and k3 are indeterminate. A physical reason that t
constraint moment has no component in theep1 direction is that
this moment is generated by reaction forcesFP andFQ atP andQ,
respectively. It is easy to see thatM r c

5pP3FP1pQ3FQ , and
thus it is impossible to generate a component of the constr
moment along a vector connecting the center of the rotor
either of these points.

The constraint moment must satisfy two conditions for rolli
to occur atP andQ. First, for contact at these points to be mai
tained

k2,0. (12)

Additionally, the conditions for static Coulomb friction must b
satisfied to permit rolling without sliding:

uk3 /k2u<msA11
1

z2
>ms (13)

wherems is the coefficient of static friction, and the approxim
tion results if one employs the physically plausible assumpt
that z@1.

It is reasonable to believe that there is some energy loss w
the system and that this loss can be modeled as a moment
opposes the rotation of the rotor. The dissipation could be cau
either by frictional loss at the axle-track contact point or aero
namic drag. A simple viscous model for the dissipative momen

M r d
52sv1e1 , (14)

wheres is a positive constant andv15vr•e1 . It is easy to see
that M r d

•vr<0.
To calculate the angular momentum of the rotor, we note t

its inertia tensorJ is

J5l1e1^ e11l2~e2^ e21e3^ e3! (15)

in the current configuration.2 Here,l1 is the principal moment of
inertia about the rotor’s axis of symmetry, andl2 is the other
distinct principal moment of inertia. By combining~1! and~2! and
applying the geometric relationshipg52za ~cf. ~9!!, the com-
ponents of the rotor’s angular velocityvr are obtained:

v15vr•e152zȧ1ċ sin~a2c!sinu,

v25vr•e25ċ cos~a2c!sinu, (16)

v35vr•e35ȧ2ċ~12cosu!.

Using ~15! and ~16!, we find that the angular momentumH rela-
tive to the center of mass of the rotor is

H5Jvr5l1v1e11l2~v2e21v3e3!. (17)

The balance of angular momentum for the rotor is

Ḣ5M r . (18)

Since the constraint moment only has components alongep2 and
ep3 , the components of the balance of angular momentum in
ep i ( i 51,2,3) directions involve one uncoupled differential equ

2See Beatty@9# and Casey@7# for detailed discussions on the use of tensors
rigid-body dynamics.
Journal of Applied Mechanics
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tion for the final independent Euler anglea and two equations for
the constraint moment. Evaluatingep i•Ḣ5ep i•M r yields

z~hv̇1!2@v̇31zȧv21~12h!v1v2#1
sz

l2
v150,

v̇22zȧv31~h21!v1v35
k2

l2
, (19)

hv̇11z@v̇31zȧv21~12h!v1v2#1
s

l2
v15

k3

l2 sinb
.

The derivation of these scalar equations uses the relationship
~3! and ~9!, as well as a dimensionless parameterh:

h5
l1

l2
. (20)

Using ~16!, ~19!1 becomes an uncoupled, nonlinear ordina
differential for a(t). We simplify this governing equation by in
troducing a new angle~see Fig. 3!: the phase angle

d~ t !5a~ t !2c~ t !. (21)

Additionally, we nondimensionalize by introducing

t5ċot (22)

where ċo is the initial condition for the precession rate (ċo

5ċ(0)). Substitution into~19!1, yields

d91ad81bc82 cosd2~bc91cc8!sind2dc82 sin 2d

5ec92ac8. (23)

Here, each apostrophe denotes differentiation with respect to
dimensionless variablet ~e.g.,d85dd/dt andd95d2d/dt2! and
the constant coefficients are

a5
z2n

11z2h
, b5

zh sinu

11z2h
, c5

zn sinu

11z2h
,

d5
1

2

~h21!sin2 u

11z2h
, e5

z2h1cosu

11z2h
. (24)

A new dimensionless parametern, that reflects the importance o
the dissipative moment, appears in~24!:

n5
s

l2ċo

. (25)

Once we find a solution to the single equation of motion for t
rotor, ~23!, we can then calculateM r c

and verify that the criteria
for rolling are satisfied. Knowingd(t), we can then determine

M r c
5l2@v̇22zȧv31~h21!v1v3#ep2

1l2A11z2~hv̇11nċov1!ep3 , (26)

which follows from~19!. Finally, the criteria~12! and~13! deter-
mine whether the rolling motion of the rotor is physically po
sible.

4 Constant Track Precession Rate

When the track’s precession rateċ is constant,~23! simplifies
greatly. It also becomes tractable to identify steady-state mot
and to study their stability. Furthermore, we can identify a co
served quantity when the only moment acting on the rotor is
constraint moment~i.e., no dissipative moment is present!. We
now assume that the track rotates with a constant precession
of ċ(t)5ċo . Hencec8(t)51, c9(t)50, and~23! becomes

d91ad81b cosd2c sind2d sin 2d52a. (27)
in
JUNE 2000, Vol. 67 Õ 323
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Figure 5 shows a phase portrait of~27! with parameters char
acteristic of theDynabee. In this figure, the solid lines are solutio
trajectories for several initial conditions chosen specifically so t
the solutions either originate at the unstable equilibrium poin
approach it. The shaded region is the basin of attraction of
stable equilibrium. Also shown in Fig. 5 are the contour lines
the ratio uk3 /k2u, which determines whether or not the rollin
criterion in ~13! is satisfied. If a trajectory passes through a p
tion of the phase plane where this ratio exceeds the coefficien
static friction ms , then sliding will occur and the equation o
motion ~27! is no longer applicable. The criterion for maintainin
contact between the rotor’s axle and the track,k2,0 ~cf. ~12!!, is
satisfied everywhere within the region of states shown in Fig
however, this criterion is not satisfied neard8521. We remark
that trajectories lying outside the basin of attraction, modulo a
of measure zero, will eventually result in decreasing values ofd8.
As a result, these trajectories will then correspond to motions
the Dynabeewhere slipping of the rotor relative to the track o
curs and~27! becomes invalid.

The solutions of~27! whend8(t)5d9(t)50 determine the ex-
istence and locations of the system equilibria. For values oz

Fig. 5 Phase plane for the rotor response given a constant
precession rate of the track. The solid lines are trajectories for
several initial conditions, the shaded area is the basin of attrac-
tion of the stable equilibrium, and the dashed lines are con-
tours for the ratio zk3 Õk2z. The phase plane is of „27… with z
Ä29, hÄ1.7, nÄ0.018, and uÄpÕ4.
324 Õ Vol. 67, JUNE 2000
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@1, there exist either two equilibria~one stable and one unstable!
or no equilibria, depending on the relative values of the dim
sionless parametersz, h, and n and the nutation angleu. When
equilibria exist, the rotor can attain a steady state motion at
stable equilibrium point where the axle revolves around the tr
at the same rate that the track is precessing; the resulting spin
is ġ(t)52zċo , a result which explains the magnification of th
spin rate as a function of the precession rate.

In the case that the dissipative moment is negligible (s50),
the equation of motion~27! reduces to

d91b cosd2d sin 2d50 (28)

and it is straightforward to show that the response conserve
quantity analogous to the total energy of the system:

d

dt S 1

2
d821b sind1

1

2
d cos 2d D50. (29)

Furthermore, for the conservative system, a stable equilibr
point alwaysexists atd52p/2 and an unstable equilibrium poin
exists atd5p/2. At both of these equilibria, the contact force
between the rotor’s axle and the track are purely normal~i.e.,
there is no frictional force sok350!, as is expected since th
magnitude of the rotor’s angular momentum is constant. The c
straint moment evaluated at the stable equilibrium is

M r c
5S ġ

z D 2

cosu@l1z1~l12l2!sinu#ep2 . (30)

In writing ~30!, we have used the relationġ(t)52zċo . Ignoring
the inertia of the track and its casing, this is equal to the mom
that the holder of theDynabeeis forced to exert. It should be
noted that the applied moment is a quadratic function ofġ.

5 Increasing the Track Precession Rate
We now prescribe the precessional motion of the track to be

at a given precessional rateċo (ċo.0) and increase slowly there
after according to

ċ~ t !5ċo~11«ċot !, (31)

where « is a constant such that 0,«!1. The dimensionless
equivalent to~31! is c8(t)511«t. Substituting this expression
into the equation of motion for the rotor,~23!, we arrive at

d91ad81b~11«t!2 cosd2@b«1c~11«t!#

3sind2d~11«t! 2sin 2d52a~11«t!2e« (32)

wherea, b, c, d, ande were defined by~24!.
Fig. 6 Cross sections of the basin of attraction of the stable equilibrium for
„32… when the track’s precession rate is increasing according to „31… with z
Ä29, hÄ1.7, nÄ0.018, uÄpÕ4, and «Ä0.01. A sample trajectory is also shown
whose initial conditions are c8„0…Ä1, d„0…ÄÀ2.5, and d8„0…Ä0.1.
Transactions of the ASME
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As in the constant precession case, solutions to the equatio
motion were numerically calculated. For a given set of parame
$z, h, n, u, «%, any trajectory lying in the basin of attraction of th
stable equilibrium of~32! also satisfies

lim
t→`

g8~t!52zc8~t!52z~11«t!, (33)

and is thus a response that exhibits spin-up. Figure 6 shows c
sections of the basin of attraction atc851.0, 1.5, and 2.0 for a
choice of parameters characteristic of theDynabeeand with the
spin-up coefficient« equal to 0.01.

The trajectory of the initial conditionsc8(0)51, d(0)522.5
and d8(0)50.1 is also included in Fig. 6 as an example of
trajectory that lies within the basin of attraction. The respon
extending from these initial conditions approaches the follow
steady-state conditions as time increases:

lim
t→`

d~t!52p/2,

(34)
lim
t→`

d8~t!50.

The maximum value ofuk3 /k2u50.99 is attained whenc8
51.24, and as time increases andc8 becomes larger, this ratio
approaches zero asuk3 /k2u}1/c8. Simultaneously,M r c

grows

proportionally toc82. Thus, when the precession rate is large,
response resembles the equilibrium conditions for the conse
tive system described in Section 4.

As evidenced in Fig. 6, the basin of attraction of the sta
equilibrium changes asc8 becomes larger.3 It is therefore possible
for initial conditions ~d, d8! which were originally outside this
basin to become trapped inside it. This phenomenon is o
known as resonance capture. It has been studied in a varie
mechanical systems including satellites and celestial bodies~cf.,
e.g.,@10–13#!.

3We are grateful to an anonymous reviewer for bringing this matter to our at
tion.
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In summary, we find that as the rotor spins up, the coefficien
static Coulomb friction needed to sustain rolling decreases. T
explains the observed phenomenon that it is difficult to spin u
Dynabeeif the rotor is not given a sufficiently large initial spin
rate. It would clearly be of interest to examine the case where
rotor slides on the track, but we leave this matter for future wo
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Generalized Hellinger-Reissner
Principle
By the semi-inverse method of establishing variational principles, the Hellinger-Reis
principle can be obtained straightforwardly from energy trial-functionals without us
Lagrange multipliers, and a family of generalized Hellinger-Reissner principles with
arbitrary constant are also obtained, some of which are unknown to us at the pre
time. The present theory provides a straightforward tool to search for various variatio
principles directly from governing equations and boundary conditions.
@S0021-8936~00!00702-9#
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1 Introduction
It is well known that the Hellinger-Reissner principle can

deduced from the minimum complementary energy principle
the Lagrange multiplier method by eliminating the constraints
equilibrium equations. In this paper, we will rederive the we
established principle directly from its governing equations a
boundary conditions without Lagrange multipliers via the sem
inverse method previously proposed by this author. In additio
family of generalized Hellinger-Reissner principles will also
obtained.

2 Mathematical Formulation of Small Displacement
Problems in Elasticity „†1,2‡…

The basic equations governing the elastic body subjected to
action of a distributed body force can be written as follows:

1 Equilibrium conditions:

s i j , j1 f i50 ~ in t! (1)

in which s i j are stresses,s i j , j5]s i j /]xj , f i represent body
forces, andt is the volume of an elastic body.

2 Stress-strain relations:
For linear elasticity, we have

s i j 5ai jkl ekl ~ in t! (2a)

or

ei j 5bi jkl skl ~ in t! (2b)

in which ei j are strains, andai jkl ,bi jkl represent elastic and com
pliance constants, respectively.

Let us now introduce the strain energy densityA and comple-
mentaryB. They are defined in general by

A5E
0

e

s i j dei j or
]A

]ei j
5s i j (2c)

B5E
0

s

ei j ds i j or
]B

]s i j
5ei j (2d)

and satisfy the following energy identity:

A1B5ei j s i j . (2e)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
tember 17, 1997; final revision, January 16, 1998. Associate Technical Editor: W
Liu. Discussion on the paper should be addressed to the Technical Editor, Prof
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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It should be specially pointed out that Eqs.~2a!–~2d! are
equivalent to each other.

3 Strain-displacement relations:

ei j 5
1

2
~ui , j1uj ,i ! ~ in t!. (3)

4 Boundary conditions for given surface displacement:

ui5ūi ~ in Gu! (4)

5 Boundary conditions for given external force on boundary s
face:

s i j nj5 p̄i ~ in Gs! (5)

whereGu1Gs5G covers the total boundary surface.
The known variational principles are recapitulated below:

1 The Minimum Potential Energy Principle.

JP~ui !5E E E ~A2 f iui !dt2E E
Gs

p̄iuidS (6)

whereui is one kind of independent variable, Eqs.~2! of stress-
strain relations, Eq.~3! of strain-displacement relations, and th
boundary conditions~4! for given surface displacement are i
variational constraints.

2 Hellinger-Reissner Variational Principle.

JHR~s i j ,ui !5E E E ~B1s i j , jui1 f iui !dt2E E
Gu

s i j nj ūidS

2E E
Gs

ui~s i j nj2 p̄i !dS (7)

wheres i j ,uj are two kinds of independent variables, and Eq.~2!
of stress-strain relations are its variational constraints.

It is interesting to note that if Eq.~3! of strain-displacement
relations is treated as a constraint then its stationary condit
satisfy Eqs.~1! and ~2!. Here a simple proof is given.

Proof: Making the above functional~7! stationary, in view of
the independent ofs i j andui , we can obtain~1!, ~4!, and~5! and
the following equation

]B

]s i j
2

1

2
~ui , j1uj ,i !50 (8)

as a Euler equation
Using the constraints of Eq.~3!, the above Euler equation re

duces to Eq.~2d!, the stress-strain relation. The interesting res
lies in the fact that by involutory transformation~@3,4#! the form

p-
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of the functional~7! remains unchanged, while its stationary co
ditions are changed. Therefore we can use Eqs.~2! or ~3! as con-
straints when using the finite element method based on
Hellinger-Reissner principle or other direct variational methods
solve a problem.

3 Semi-Inverse Method and Trial-Functional
In this paper, we will rederive the well-known Hellinge

Reissner principle without using the Lagrange multipliers. As
first step towards this end, we will first introduce the concepts
the semi-inverse method and trial-functional~@5–8#!.

Using Lagrange multipliers to remove the constraints of stra
displacement relations~3! and stress-strain relations~2! in the
minimum potential energy principle~7!, one obtains

J~ui ,ei j s i j ,l i j ,b i j !5JP~ui !1E E E l i j S ei j 2
1

2
ui , j

2
1

2
uj ,i Ddt1E E E b i j S s i j 2

]A

]ei j
Ddt

(9)

wherel i j andb i j are Lagrange multipliers to be determined.
In the process of identification of Lagrange multipliers, t

multipliers are treated as independent variationsa priori, but after
identification, they become the functions of the other original va
ables. That is to say the Lagrange multipliers are not indepen
at all, the contradiction existing in the Lagrange multiplier meth
may lead to a variational crisis~@9#!. To overcome the contradic
tion mentioned above, we can pre-assume that the multiplier
functional ~9! can be expressed as follows~@10#!:

l i j 5l i j ~ui ,ei j ,s i j ,ui , j ,ei j , j ,s i j , j ! (10)

b i j 5b i j ~ui ,ei j ,s i j ,ui , j ,ei j , j ,s i j , j !. (11)

To simplify the identification of the Lagrange multipliers, th
author introduces an unknown functionF to replace the terms
involving the multipliers~@10#!:

F5l i j S ei j 2
1

2
ui , j2

1

2
uj ,i D1b i j S s i j 2

]A

]ei j
D . (12)

Accordingly, the functional~9! can be rewritten as follows:

J~ui ,ei j ,s i j !5E E E ~A2 f iui1F !dt1E E
Gu

GdS

1E E
Gs

HdS (13)

whereF, G, andH are unknowns to be determined.
The above functional with unknownsF, G, andH is called the

trial-functional, or energy trial-functional, the identification of the
unknown function is very similar to that of the Lagrange mul
pliers.

The energy trial-functional has several ways to be construc
and details have been discussed in@5,6#; for example, the follow-
ing three integrals with an energy form can be used as tr
functionals.

J5E E E H s i j S ei j 2
1

2
ui , j2

1

2
uj ,i D1FJ dt1E E

Gu

GdS

1E E
Gs

HdS (14)
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J5E E E ~s i j ei j 1F !dt1E E
Gu

GdS1E E
Gs

HdS (15)

J5E E E $ui~s i j , j1 f i !1F%dt1E E
Gu

GdS1E E
Gs

HdS.

(16)

Generally speaking, all integrals with an energy form can
used as trial-functional, leading to the needed variational p
ciples.

4 Hellinger-Reissner Principle
In this section we will use the semi-inverse method to reder

the well-established Hellinger-Reissner principle from differe
trial-functionals. If we want to establish a functional with tw
kinds of independent variations (ui ,s i j ) under constraints of
stress-strain relations~2!, an energy trial-functional can be writte
down directly from its partial differential Eq.~1!.

JHR1~ui ,s i j !5E E E $ui~s i j , j1 f i !1F%dt1E E
Gu

GdS

1E E
Gs

HdS. (16a)

Taking variations with respect to the two kinds of independ
variations~ui ands i j !, we obtain

duJHR15E E E $~s i j , j1 f i !dui1duF%dt1E E
Gu

duGdS

1E E
Gs

duHdS (17)

dsJHR15E E E H 2
1

2
~ui , j1uj ,i !ds i j 1dsFJ dt

1T uinjds i j dS1E E
Gu

dsGdS1E E
Gs

dsHdS

(18)

for all variations ofdui andds i j . We have

dui : s i j , j1 f i1Fu50 (19)

ds i j : 2
1

2
~ui , j1uj ,i !1Fs50 (20)

where duF5Fu5]F/]ui2(]F/]ui , j ) , j is called the functional
derivative after Goldstein@11#. If F is expressed inexplicitly with
ui , j , then the functional derivative becomes partial derivative, i
Fu5]F/]ui .

Equations~19! and ~20! with unknownF are called the trial-
Euler equations. We search for such an unknownF, so that the
trial-Euler equations satisfy Eqs.~1! and~3!. Accordingly we have

Fu50 (21)

Fs5ei j . (22)

In view of the constraints of~2!, we can identify the unknown
as follows:

F5B~s i j !. (23)
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The trial-functional~16a!, therefore, can be rewritten as fo
lows:

JHR1~ui ,s i j !5E E E $ui~s i j , j1 f i !1B%dt1E E
Gu

GdS

1E E
Gs

HdS. (24)

The unknownsG and H can be identified in the same way
From Eqs.~17! and ~18! we obtain following trial-Euler equa-
tions.

At the boundaryGu

dui : Gu50 (25)

ds i j : uinj1Gs50 (26)

and at the boundaryGs

dui : Hu50 (27)

ds i j : uinj1Hs50. (28)

The trial-Euler equations~25! and~26! should satisfy boundary
conditions~4! or identity, accordingly we have

G52s i j nj ūi . (29)

The trial-Euler equations~27! and~28! should satisfy boundary
conditions~5! or identity, we set

Hu52~s i j nj2 p̄i ! (30)

Hs52uinj . (31)

We therefore obtain

H52ui~s i j nj2 p̄i !. (32)

Substituting~29! and ~32! into ~24! yields Hellinger-Reissner
principle.

The trial-functional can be constructed in an arbitrary ene
form, for example

JHR2~ui ,s i j !5E E E ~s i j ui , j1F !dt1E E
Gu

GdS

1E E
Gs

HdS. (33)

The identification of unknown is the same as before. Mak
the above trial-functional stationary, we obtain the following tria
Euler equation.

dui : 2s i j , j1Fu50 (34)

ds i j :
1

2
~ui , j1uj ,i !1Fs50 (35)

The above trial-Euler equations should satisfy Eqs.~1! and ~3!
respectively, we therefore obtain

Fu52 f i (36)

Fs52ei j . (37)

In view of constraints of~2!, the unknownF can be determined
as follows

F52B~s i j !2 f iui . (38)

The trial-functional~33!, therefore, can be rewritten down a
follows
328 Õ Vol. 67, JUNE 2000
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JHR2~ui ,s i j !5E E E ~s i j ui , j2B2 f iui !dt1E E
Gu

GdS

1E E
Gs

HdS. (39)

The trial-Euler equations at the boundary read
At the boundaryGu

dui : s i j nj1Gu50 (40)

ds i j : Gs50 (41)

and at the boundaryGs

dui : s i j nj1Hu50 (42)

ds i j : Hs50. (43)

By the same manipulation as above we can identify the
knowns as follows

G52s i j nj~ui2ūi !, H52 p̄iui . (44)

We therefore obtain following functional

JHR2~uis i j !5E E E ~s i j ui , j2B2 f iui !dt

2E E
Gu

s i j nj~ui2ūi !dS2E E
Gs

p̄iuidS.

(45)

Integrating by parts yields Hellinger-Reissner principle.
We establish another trial-functional to approach Helling

Reissner principle, which reads

JHR3~ui ,s i j !5E E E $B1F%dt1E E
Gu

GdS1E E
Gs

HdS.

(46)

One of its trial-Euler equations can be written down as follo

ds i j :
]B

]s i j
1Fs50 (47)

which should satisfy Eq.~3!, and by virtue of constraints~2!, we
have

Fs52ei j 52
1

2
~ui , j1uj ,i !. (48)

Note thats i j ui , j5s i j uj ,i , we therefore can identify the unknow
as follows

F52s i j ui , j1F1 (49a)

or

F5s i j , jui1F1 (49b)

whereF1 is newly introduced unknown function ofui

JHR3~ui ,s i j !5E E E $B1s i j , jui1F1%dt1E E
Gu

GdS

1E E
Gs

HdS. (50)

We can obtain the other set of trial-Euler equations
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dui : s i j , j1
dF1

dui
50 (51)

which should satisfy Eq.~1!, accordingly we have

dF1

dui
5 f i . (52)

We therefore obtain

F15 f iui . (53)

Identifying the unknownsG andH yields the Hellinger-Reissne
principle.

Other energy trial-functionals, such as

JHR4~ui ,s i j !5E E E $ui~s i j , j1 f i !1aB1F%dt1E E
Gu

GdS

1E E
Gs

HdS. (54)

JHR5~ui ,s i j !5E E E $ui~s i j , j1a f i !1F%dt1E E
Gu

GdS

1E E
Gs

HdS (55)

can also lead to Hellinger-Reissner Principle, wherea is a con-
stant.

5 Generalized Hellinger-Reissner Principle
In this section, we will use the semi-inverse method to estab

a family of generalized Hellinger-Reissner principles with co
stant parameters which have been studied by Felippa. The p
ence of the free parameter offers an opportunity for the system
derivation of energy-balanced finite elements that combine
placement and stress assumptions, details can be found in F
pa’s Refs.@12–14#.

As a first step to this goal, we construct the following tria
functional

JGHR1~ui ,s i j !5E E E $ui~s i j , j1 f i !1aA1F%dt

1E E
Gu

GdS1E E
Gs

HdS (56)

wherea is a constant.
Its trial-Euler equations can be written as follows:

dui : s i j , j1 f i2aS ]A

]ei j
D

, j

1Fu50 ~aÞ1! (57)

ds i j : 2
1

2
~ui , j1uj ,i !1Fs50. (58)

By virtue of constraints~2!, we can identify the unknownF as
follows:

F52a f iui1B. (59)

The trial-functional~56!, therefore, can be renewed as follows:
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JGHR1~ui ,s i j !5E E E $ui~s i j , j1 f i !1B1a~A2 f iui !%dt

1E E
Gu

GdS1E E
Gs

HdS. (60)

The trial-Euler equations at the boundary read as follows.
the boundaryGu ,

dui : a
]A

]ei j
nj1Gu50 (61)

ds i j : uinj1Gs50, (62)

and at the boundaryGs ,

dui : a
]A

]ei j
nj1Hu50 (63)

ds i j : uinj1Hs50. (64)

By the same manipulation as above we can identify the unkno
as follows:

G52s i j nj ūi2as i j nj~ui2ūi ! (65)

H52aui p̄i2ui~s i j nj2 p̄i !. (66)

We therefore obtain the following generalized Hellinger-Reiss
principle:

JGHR1~ui ,s i j !5E E E $ui~s i j , j1 f i !1B1a~A2 f iui !%dt

2E E
Gu

@s i j nj ūi1as i j nj~ui2ūi !#dS

2E E
Gs

@aui p̄i1ui~s i j nj2 p̄i !#dS (67)

which is unknown to us at the present time. Fora50 we obtain
the Hellinger-Reissner principle~7!.

The trial-functional for the generalized Hellinger-Reissner pr
ciple under constraints of~3! can also be constructed as follows

JGHR2~ui ,s i j !5E E E $uis i j , j1F%dt1E E
Gu

GdS

1E E
Gs

HdS. (68a)

The termuis i j , j can be expressed as follows:

uis i j , j5auis i j , j1~12a!uis i j , j .

Substituting it into~68a!, then integrating by parts yields

JGHR2~ui ,s i j !5E E E $2as i j , jei j 1~12a!uis i j , j1F%dt

1E E
Gu

GdS1E E
Gs

HdS. (68b)

The trial-Euler equations of the above trial-functional~68b! can
be expressed as follows:

dui : as i j , j1~12a!s i j , j1Fu50 (69)

ds i j : 2aei j 2
1

2
~12a!~ui , j1uj ,i !1Fs50 (70)
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which should satisfy Eqs.~1! and~2!. In virtue of constraints~3!,
we can identify the unknownF as follows:

F5B1 f iui . (71)

The unknownsG and H can be identified in the same way, w
therefore obtain the following generalized Hellinger-Reiss
principle:

JGHR2~ui ,s i j !5E E E $2as i j , jei j 1~12a!uis i j , j1 f iui

1B%dt1E E
Gu

s i j nj~dui2ūi !dS

1E E
Gs

ui@ p̄i2~12a!s i j nj #dS (72a)

5E E E $2a~s i j ei j 1uis i j , j !1ui~s i j , j1 f i !1B%dt

1E E
Gu

s i j nj~dui2ūi !dS1E E
Gs

ui@ p̄i2~12a!s i j nj #dS.

(72b)

We will illustrate another way to arrive at a generalized Helling
Reissner principle; the trial-functional can be constructed as
lows:

JGHR3~ui ,s i j !5E E E ~A2 f iui1F !dt1E E
Gu

GdS

1E E
Gs

HdS. (73)

In this trial-functional, we will treat Eq.~3! as a variational con-
straint; that means we try to find such unknowns, so that
stationary conditions satisfy Eqs.~1!, ~2!, ~4!, and ~5!. Its trial-
Euler equations read

dui : 2S ]A

]ei j
D

, j

2 f i1Fu50 (74)

ds i j : Fs50. (75)

The trial-Euler Eq.~74! should satisfy Eq.~1!, thus we have

dF

dui
50. (76)

By virtue of constraint~3!, the unknown functionF, which must
also have the form of energy, can be written in a more gen
form:

F5a~s i j , jui1A!1F1~s i j ,s i j , j ! (77)

where a is a nonzero constant, andF1 is the new introduced
unknown function to be further determined.

Substituting~77! into ~75! yields

2a
1

2
~ui , j1uj ,i !1

dF1

ds i j
50 (78)

which should satisfy the other set of its stationary conditions,
~2!, and in view of the constraint~3!, we have

dF1

ds i j
5aei j 5a

]B

ds i j
. (79)

It is easy to identify the unknown functionF1 as follows:
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F15aB. (80)

So we obtain the following renewed trial-functional

JGHR3~ui ,s i j !5E E E $A2 f iui1a~s i j , jui1A1B!%dt

1E E
Gu

GdS1E E
Gs

HdS. (81)

The trial-Euler equations at boundary conditions read

dui :~11a!s i j nj1Gu50 (82)

ds i j :auinj1Gs50 (83)

ds i j :auinj1Hs50 (84)

dui :~11a!s i j nj1Hu50. (85)

We therefore obtain

G52~11a!s i j njui1s i j nj ūi (86)

H52as i j uinj2ui p̄i . (87)

Substituting the identifiedG andH into the trial-functional~81!,
we can obtain

JGHR3~ui ,s i j !5E E E $A2 f iui1a~s i j , jui1A1B!%dt

1E E
Gu

s i j nj@ ūi2~11a!ui #dS

2E E
Gs

ui~ p̄i1as i j nj !dS (88)

which is also a generalized Hellinger-Reissner principle and
also be found in Felippa’s reference@12#, and the Hellinger-
Reissner principle can be obtained as its special case (a521)

Integrating by part, and using the constraint~3!, the above func-
tional can be converted into the following form without changi
its stationary conditions:

JGHR3* ~ui ,s i j !5E E E $A2 f iui1a~A1B2s i j ei j !%dt

1E E
Gu

s i j nj~ ūi2u!dS1E E
Gs

ui p̄idS.

(89)

6 Generalized Variational Principles
Now we try to establish a generalized variational principle fro

the Hellinger-Reissner principle via the Lagrange multipl
method. We have

JGVP~s i j ,ei j ,ui ,l i j !5JHR~s i j ,ui !1E E E l i j S ei j 2
]B

]s i j
Ddt

(90)

wherel i j are Lagrange multipliers to be determined.
Taking variations with respect to the independent variatio

ei j , we obtain

deJGVP5E E E l i j dei j dt50. (91)

We therefore obtain

l i j 50. (92)
Transactions of the ASME
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The phenomena is call the variational crisis after Chien.
It is quite convenient to remove the variational crisis via t

semi-inverse method. The trial-functional for the problem read

JGVP~s i j ,ei j ,ui !5E E E ~B1s i j , jui1 f iui1F !dt

2E E
Gu

s i j nj ūidS2E E
Gs

ui~s i j nj2 p̄i !dS.

(93)

Its trial-Euler equations can be expressed as follows:

dui :s i j , j1 f i1Fu50 (94)

ds i j :
]B

]s i j
2

1

2
~ui , j1uj ,i !1Fs50 (95)

dei j :Fe50. (96)

The above three kinds of trial-Euler equations should satisfy E
~1!–~3!, remember that the unknownF has the form of energy, we
set

Fu50 (97)

Fs5aS ei j 2
]B

]s i j
D (98)

Fe5aS s i j 2
]A

]ei j
D . (99)

We therefore can identify the unknownF as follows:

F5a~A1B2s i j ei j !. (100)

Thus we obtain following generalized variational principle wit
out any constraints.

JGVP~ui ,ei j ,s i j !5JHR~ui ,s i j !1aE E E ~A1B2s i j ei j !dt

(101)

which is actually Chien’s generalized variational principle@9#.

7 Conclusion
In the paper, we have proved that the well-known Helling

Reissner principle can also be regarded as a principle under
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straints of strain-displacement, the Hellinger-Reissner princi
and a family of generalized Hellinger-Reissner principles can
readily obtained via the semi-inverse method. By this method
can also obtain the Hu-Washizu principle, where details will
discussed in another paper.
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Behavior of a Rubber Spring
Pendulum
The stability of motion of a nonlinear neo-Hookean rubber spring pendulum und
special type of support oscillation is studied. The small swing motion is described
Mathieu-Hill equation, corresponding stability curves for which are generated in a
evant parametric plane with a stability criterion obtained earlier. Autoparametric re
nance in the special case of linearized motions is found to occur, as usual.
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1 Introduction
It is known that a linear elastic pendulum, with certain param

ric adjustments, exhibits autoparametric resonance. Althoug
simple mechanical system, study of the mathematical mode
such a pendulum can explain rather complex behavior of syst
in various fields of physics and engineering.

It has been shown earlier by Minorsky@1# and later by Olsson
@2# that the autoparametric resonance occurs when the linea
natural frequency of the axial mode becomes equal to twice
of the pendulum mode. Physically, in this situation a perio
energy exchange takes place as a result of nonlinear resonan
pling between the two modes of oscillation. Several other pap
@3–5# are devoted to the study of such a system.

Ryland and Meirovitch@6# with a novel solution method for
Hill’s equation, discussed the behavior of a spring pendulum w
oscillating support. Studies on chaotic motion of this system h
also appeared in the papers by Nunez-Yepez et al.@7# and Cuerno
et al. @8#. In all these expositions the spring of the elastic pen
lum is considered to be linear and the nonlinearities conside
therein are purely geometrical.

In many engineering applications, structural components m
of rubber-like materials are used to sustain uniaxial, torsional,
shearing vibrations. For example, these are employed as sus
sion springs in automobiles, pumps, machines, etc. Reinfo
rubber-like materials are used as drive shafts in compact vehi
Thus, it may be of no surprise to expect the possibility of au
parametric resonance in such cases in a way similar to the ca
linear spring pendulum. In this paper therefore, we shall cons
a nonlinear spring pendulum in which a rubber rod made of n
Hookean material possessing material nonlinearity supports
pendulum bob and analyze the stability of swinging motion.

2 Formulation
The schematic of the nonlinear elastic pendulum is shown

Fig. 1 ~inset!. The pendulum is considered to be a particle of m
m and suspended by a neo-Hookean rubber rod of undefor
length l 0 and cross-sectional areaA0 . The mass of the rod is
considered to be much smaller than that of the pendulum bob.
assumed that the motion of this nonlinear elastic pendulum
entirely confined to the plane of Fig. 1. The displacement of
support point is denoted byY(t). Let the uniform axial stretchl
and static equilibrium stretchls be defined in terms of the stati
displacementxst , l 0 , and the instantaneous radial displacemenx
by

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
26, 1997; final revision, Apr. 7, 1998. Associate Technical Editor: M. M. Carrol

Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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l 01xst1x

l 0
.0 and ls5

l 01xst

l 0
.0.

In a neo-Hookean rubber rod, the uniform axial forceT(l)
required to produce the stretchl is determined by

T~l!5A0G~l2l22!,

in which G is the shear modulus at the natural undeformed st
The equations of motion for the pendulum bob may be obtai

with the help of the axial force expression given above in
following form:

l̈2lu̇21H~l21/l2!5~vp
21 Ÿ̄!cosu, (2.1)

and

lü12l̇ u̇1~vp
21 Ÿ̄!sinu50, (2.2)

where

H5A0G/ml0 , vp
25g/ l 0 , and Ȳ5Y/ l 0 .

Equations~2.1! and ~2.2! are nonlinear and coupled, exact s
lutions of which are difficult to obtain for arbitrary support mo
tion. However, for small lateral motion of the pendulum, the ax
response that is proportional to the forcing function can be fou
analytically. Thus, in~2.1! and ~2.2! we assume

Ÿ̄5BHl, (2.3)

whereB is a real constant. The equations of motion~2.1! and~2.2!
may now be rewritten for this type of support motion as

l̈2lu̇21HF ~12B cosu!l2
1

l2G5vp
2 cosu, (2.4)

and

lü12l̇ u̇1~vp
21BHl!sinu50. (2.5)

The static equilibrium axial stretch and angular deflection c
be obtained from~2.4! and ~2.5! as the time-independent solu
tions. Thus, from~2.5! u5us50 ~hanging position!, p ~inverted
position!. Consequently, from~2.4! the axial static stretch turns
out to be the solution of

~12B!ls
32~21!c

ls
2

2k
2150. (2.6)

Note thatc50 whenus50 andc51 whenus5p. The nondi-
mensional stiffness ratio,k5A0G/2 mg. We shall consider here
only the hanging pendulum case (c50).
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For 2`,B,1, only one positive real root of~2.6! exists and
in this range ofB, as k→`, ls→1/(12B)1/3 ~5ls* , say!. Evi-
dently, forB,0, ls* ,1. In fact, forl5ls* , Eq. ~2.6! shows that
there exists ak* 521/2B such that for allk>k* , ls<1. This
shows that forB,0, in a certain range of values ofk we can
expect an inverted pendulum-like behavior. Figure 1 shows
variation of static equilibrium stretch with the stiffness ratio f
various values ofB. For B,0, static equilibrium values less tha
1 may be noted. Also, asB becomes more negativek* reduces.
For B>1, it may be argued that~2.6! does not yield a real positive
value of the static stretch. Thus, in this discussion only the va
of B,1 are considered.

We shall now resume our discussion on the solution of
equations of motion. The following two special cases are con
ered for the closed-form solutions;~i! small axial and swinging
motions and~ii ! finite axial and small swinging motions. The ca
of finite swinging motion superimposed on static stretch may
analyzed in a way similar to that given in Nayfeh and Mook@9#.

3 Small Oscillations Superimposed on a Finite Static
Stretch

In this case, withl5ls1z, uzu5ux/ l 0u!1, and for smallu and
u̇, Eqs.~2.4! and ~2.5! reduce to

z̈1HS 12B1
2

ls
3D z50, (3.1)

and

lsü1~vp
21BHls!u50. (3.2)

Equations~3.1! and ~3.2! show two completely decoupled lin
ear harmonic oscillators with axial and swing mode nondim
sional natural frequenciesva5AH(12B12/ls

3)1/2, and vs

5(vp
2/ls1BH)1/2, respectively. The static equilibrium Eq.~2.6!

may now be used to remove the parameterH(52kvp
2) from these

frequency expressions yieldinguniversal frequency formulas in
dependent of the shear modulus, G of the neo-Hookean rod. Thus,

va

vp
5

1

Als
F ~12B!ls

312

~12B!ls
321G1/2

and

vs

vp
5

1

Als
F ls

321

~12B!ls
321G1/2

. (3.3)

The result~3.3!1 shows thatva /vp grows indefinitely large as
ls→1/(12B)1/3 (5ls* ) and it approaches zero irrespective of t

Fig. 1 Static equilibrium stretch versus stiffness ratio for vari-
ous values of B in the suspended pendulum case. Inset shows
system schema.
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values ofB as ls→`. It may be mentioned here that forB50,
(3.3)1 yields the result obtained and presented graphically by
atty ~@10#, Fig. 1!.

The universal formula (3.3)2 gives a new result, however. Th
graph of small swing frequency is shown in Fig. 2 for vario
values ofB. It is clear from (3.3)2 that vs /vp→0 asls→` for
all values ofB,1. ForB.0, asls→ls* , vs /vp→`. However,
for B,0 the curves originate fromvs /vp50 at ls51 and in-
crease monotonically to their respective maximum values,
proaching zero asls→`, as shown in Fig. 2. Notice that forls
,1, no real values of the frequency exist. Hence the asympt
behavior will not be present sincels* ,1. Also for a fixed value of
ls the swing frequency increases with the increase ofB from
negative to positive values. Finally, it follows from~3.3!2 that for
B50, atls51, vs /vp51.

4 Small Swinging Motion and Finite Amplitude Axial
Vibration

We consider the case whereu and u̇ are small so that the
equations of motion~2.4! and ~2.5! take the following form:

l̈1HF ~12B!l2
1

l2G5vp
2, (4.1)

lü12l̇ u̇1~vp
21BHl!u50. (4.2)

Notice here that the swing mode is influenced by the stretch
oscillation.

The closed-form analytical solution of~4.1! may now be ob-
tained by following Beatty@10# and Beatty and Bhattacharyy
@11#. We shall briefly describe the procedure here.

It may be shown from the first integral of~4.1! that the time
taken by the pendulum to move axially from the initial sta
(l0 ,l̇0) at time t50 to a state (l,l̇) at time t5t is

t56
1

@H~12B!#1/2E
l0

l ldl

@2lQ~l!#1/2, (4.3)

where

Q~l!5l32Fl2

k
1

El

H
22G 1

~12B!
5~l2a!~l2b!~l1g!,

B,1. (4.4)

In ~4.4!,

E~l0 ,l̇0!5l̇0
21H~12B!l0

212H/l022vp
2l0

is the energy constant of the uncoupled axial mode only. The
roots ofQ(l) in ~4.4! are denoted bya, b, and2g of which the

Fig. 2 Linearized swing mode natural frequency versus static
equilibrium stretch for various values of B
JUNE 2000, Vol. 67 Õ 333
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positive real rootsa and b are the two extreme stretches durin
the motion such that 0,a<l(t)<b and2g is the negative rea
root of no physical significance.

The sign in~4.3! must be chosen appropriately consistent w
the initial conditions. From~4.4!, the following relationships hold:

a1b2g5
1

k~12B!
, abg5

2

~12B!
,

which may be utilized to expressb andg in terms ofa as

b5
2h1@h218~12B!/a#1/2

2~12B!
and g5

2

~12B!ab
,

(4.5)

with h5(12B)a2k21. Use of the substitution

g5
a

11n sin2 f
, n5

a2b

b
, 0<f<p/2, (4.6)

and the energy conservation equationE(l0 ,l̇0)5E(b,0)
5E(a,0) along with~4.4! and~4.5! in ~4.3! yields the travel time
t as

t56
2J0

AH
P~f;n,k!56

p

AH
L~f;n,k!, (4.7)

whereL(f;n,k) is the Heuman Lambda function, andP(f;n,k)
is the incomplete elliptic integral of third kind given by

P~f;n,k!5E
0

f dx

~11n sin2 x!~12k2 sin2 x!1/2. (4.8)

Various parameters used above are defined as

J05
a

@~12B!b~a1g!#1/2, k5F 2gn

a1gG1/2

. (4.9)

SinceB,1, clearly 0,k,1, and 0,k2,2n,1.
The periodic time for finite amplitude uniaxial oscillation

obtained from~4.7! as

Tp5
2p

AH
L~p/2;n,k!5

2p

AH
L0~j;k!

with j5sin21F11k2/n

12k2 G1/2

, (4.10)

wherein L0(j;k) is the tabulated Heuman’sL0 function. This
completes the solution of~4.1!.

Next we shall discuss the stability of the solutions of~4.2!. To
this end, using~4.7! and~4.8! to change the independent variab
from t to f we find that~4.2! may be rewritten as

d2u

df2 12P~f!
du

df
1R~f!u50, (4.11)

wherein,

P~f!5
1

l FdL

df
2

ld2L/df2

2dL/df G5
~nk2 sin2 f22n2k2!sin 2f

4~11n sin2 f!~12k2 sin2 f!
,

(4.12)

and

R~f!5
p2

l FdL

df G2F 1

2k
1BlG

5
2J0

2~11n sin2 f12Bka!

ka~11n sin2 f!2~12k2 sin2 f!
. (4.13)

Finally, with

u5y expS 2Ef

P~x!dx D
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~4.11! becomes

d2y

df2 1F~f!y50, (4.14)

in which

F~f!5R~f!2P2~f!2
dP~f!

df
. (4.15)

By inspection of~4.12!, ~4.13!, and~4.15!, it may be shown that
F(f) is an even,p-periodic function off. Thus,~4.14! turns out
to be the Mathieu-Hill equation, in regard to which we shall d
cuss the stability of the solutions.

The Mathieu-Hill equation has been studied in great detail~see
@12#! earlier. However, the stability criterion obtained by Bhatt
charyya@13# for this equation will be applied here to study th
stability of small swinging oscillation superimposed on arbitra
uniaxial motion of the pendulum. Other examples that use
criterion may be found in Zhou@14# and Beatty and Bhatta
charyya@11#. The statement of the criterion will now be provide

Let D~0!Þ0 and f 0Þ0 be the absolutely convergent Hill’s in
finite determinant for zero Floquet exponent~z50! and the con-
stant term of the absolutely convergent even cosine Fourier se
expansion ofF(f) in ~4.14!, respectively. Also, letD~0!, f, and
f 0 be real-valued so thatf 0Þ4m2, m50,1,2,3, . . . . Then, we
have the following stability criterion:

if D~0! and f 0 have opposite sign, then the Floquet expone
z is a nonzero real-valued quantity; and hence the solution
~4.14! is unstable. IfD~0! and f 0 have the same sign and ar
real-valued the solution is stable if and only if

usin~ ipz/2!u5uAD~0!sin~pAf 0/2!u<1. (4.16)

In view of the developments presented earlier in this paper,
clear that the values of bothD~0! and f 0 are determined com-
pletely by three parameters—the stiffness ratiok, the parameterB,
and the smaller extreme stretcha. Thus, ~4.16! may be used to
generate a stability map inka-plane for a given value ofB. A
brief discussion on the method of stability analysis will no
follow.

4.1 Stability Analysis. The numerical method adopted he
for obtaining the required stability maps in the parametric plan
very similar to that described in@11#. The requirements for the
success of this method are that the Fourier series forF(f) and the
Hill’s infinite determinant for all combinations of the system p
rameters under consideration must converge absolutely. In o
to guarantee this, the Fourier coefficients and the infinite deter
nants are calculated every time with an accuracy of three sig
cant digits of decimal. In most of the cases, this level of accur
is obtained within first 9 to 23 Fourier coefficients and determ
nant values computed using~939! to ~23323! central rows and
columns ofD~0!. For a given valueB, and for each value ofk,
numerically the critical value ofa5ac is found for which the
equality in~4.16! holds. This critical value of the extreme stretc
denotes the boundary between the stable and unstable regio
the kac-plane for a particular value ofB, the boundary points in
this case being the stable states of impending instability. Note
sinceE(a,0)5E(b,0), in the presentation of the results we ha
used the greater extreme stretch (bc) instead of the smaller one
(ac).

For B.0, however,f 0 andD~0! turn out to have opposite sign
in certain range of values ofk and b. In such cases, the abov
process is bypassed to conclude readily that the small pendu
motion is unstable. Of course, for a given value ofB and k, to
achieve sufficient accuracy in the result, few simple iteratio
have been performed to find the bounding values of the rang
the extreme stretch within which the small swing becomes
stable due to the opposite sign, as suggested by the stability
Transactions of the ASME
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terion. These boundary points, being themselves unstable, are
plotted in thekbc-plane to identify the stable and unstable regio
for each value ofB.

In the presentation of stability diagrams inkbc-plane, different
regions are identified as I and II to indicate occurrence of sa
and opposite signs ofD~0! and f 0 , respectively. Notice that region
II is always unstable, whereas, I is stable if and only if~4.16! is
satisfied.

4.2 Results for Fixed Support. It is clear in this case tha
B50. Results obtained from the numerical method are plotted
this case to obtain the stability curve in thekbc-plane, as shown
in Fig. 3 which divides the entire plane into unstable and sta
regions. Also the static equilibrium stretch,ls is plotted in the
same graph using the positive real root of~2.6!. The shaded por-
tion indicates the instability of infinitesimal swinging motion. I
the stable region, the small amplitude swing remains bounded
all bP(ls ,bc# for a given value ofk.

It may be noticed that ask increases from 0.794 to 3.5, th
critical value of b denoted bybc increases indicating a wide
stable region. Thus, in this range of values ofk, even for a suffi-
ciently large value ofb(ls,b,bc) the small amplitude swing-
ing oscillation of the pendulum remains bounded. Of course,
pendulum motion will not be simple harmonic. It is simple ha
monic if b is sufficiently close tols . To verify the foregoing
conclusions, the time response simulations of Eqs.~4.1! and~4.2!
have been performed for various parameter combinations fa
in the stable and unstable regions of the stability curves. Figu
shows such simulation results for the stable~k,b52,1.4! and un-

Fig. 3 Stability curves in kbc –plane for fixed support „B
Ä0…, obtained numerically from „4.16…

Fig. 4 Swing response curves obtained from Eqs. „4.1… and
„4.2… for fixed support case „BÄ0…
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stable ~k,b50.8,1.4! swing motions, respectively. These figure
clearly support the conclusions drawn from Fig. 3.

Results for free fall motion of the bob also appear in the sa
figure. In this case, fora51.0 the relationship betweenb andk is
plotted using (4.5)1 shown by the dashed line. By inspection, it
clear that the free fall motion is predicted to be unstable within
approximate range 0.5,k,1.0.

Beyond k53.5 no finite values ofbc are found numerically.
Thus, the small swing is stable for values ofk.3.5. But simula-
tions show chaos-like behavior for finite values ofb in this region.
We shall, however, exclude this part from the present treatme

Similarly, for k,0.794 the region bounded by the stabili
curve and the static equilibrium curve guarantees stable swin
motion of the pendulum. The peculiarity of the stability curve
k50.794 will be discussed in the context of support motion ana
sis presented below.

It may be observed from Eq.~4.1! that the special support mo
tion treated here amounts to the case of free oscillation of
equivalent nonlinear spring and a mass system. Hence this
can be treated for the determination of stability curves in the
quired parametric space in a similar manner.

4.3 Results for Oscillating Support. For BÞ0, results are
obtained for various values ofB,1 following the same method
described in Subsection 4.1. Some of the results forB
P@20.6,0.8# are presented showing the distinctive features due
the effect of material nonlinearity.

Figures 5–9 show the stability maps inkbc-plane for various
values ofB within the given range along with the correspondin

Fig. 5 Stability curves for the special type of support motion
with BÄÀ0.2

Fig. 6 Stability curves for the special type of support motion
with BÄÀ0.6
JUNE 2000, Vol. 67 Õ 335
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static equilibrium curves. In all these cases, the instability of sm
swing is depicted by the shaded region. Notice that the stab
curves forB,0 are to some extent different from those forB
.0. In Figs. 3 and 5–7, the boundary of the unstable regio
touches the corresponding static equilibrium curve at the p
denoted by (k2 ,ls2). It is observed that with the increase ofB
from 20.6 to 0.4 through zero,k2 increases from 0.31 to 12.84. I
addition, for B.0, Figs. 7 and 8 show similar touching poin
denoted by (k1 ,ls1) for the unstable region II. It is also foun
from stability analysis and shown by figures above that asB in-
creases through positive values to less than 0.75,k1 also in-
creases. We shall henceforth identify these two type of point
the ‘‘touch-down’’ points for future reference.

Fig. 7 Stability curves for the special type of support motion
with BÄ0.4

Fig. 8 Stability curves for the special type of support motion
with BÄ0.6

Fig. 9 Stability curves for the special type of support motion
with BÄ0.8
336 Õ Vol. 67, JUNE 2000
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Examination of all the stability curves including that forB50
shows that a point inkbc-plane lying in the stable~unstable!
region for one particular value ofB may become unstable~stable!
for another. For example, comparison of Figs. 6 and 8 shows
for B50.6 excepting a small region aboutk51.46, small swing
that is stable in the rangek>0.83 becomes unstable forB
520.6 in the same range.

Recalling the case of small oscillations superimposed on a fi
static stretch we see from~3.1! and ~3.2! that

va
2

vs
2 5

2kls~12B12/ls
3!

112Bkls
[ j 2, (4.17)

wherej .0 is a rational number. Solving forls andk from ~4.17!
and the equilibrium Eq.~2.6! we obtain the following roots:

ls j5F j 212

j 21B21G1/3

and k j5
~ j 212!2/3~ j 21B21!1/3

2~323B2B j2!
.

(4.18)

Since bothls j andk j are positive, it follows from~4.18! that the
inequality

~12 j 2!<B,3/~31 j 2! (4.19)

must hold. Forj 52, these roots are found to bek251.651(3
1B)1/3/(327B), andls25@6/(31B)#1/3 which for B50 yields
0.794 and 1.26, respectively. In Fig. 3 this point appears as
touch-down point of the boundary of the unstable region I. F
arbitrary values of the larger extreme stretch,b.ls2(5bc
51.26) atk2(50.794), as suggested by the stability curve, t
infinitesimal swing is unstable. In particular, even ifb is suffi-
ciently close tols2(51.26) for infinitesimal axial motion, the
swing still remains unstable. This observation is by no me
surprising, as shown by Olsson@2#.

For nonzero values ofB, (ls2 ,k2) can be found similarly and
compared with the touch-down points in Figs. 5–7. Thus,
present method of analysis convincingly shows that for a line
ized spring pendulum, autoparametric resonance occurs whe
linearized axial natural frequency becomes twice that of
swinging motion, i.e., when in~4.17! j 52. It is known that under
such situation, physically a strong energy exchange between
two modes of oscillation will be noticed. The inequality~4.19! for
j 52 gives23<B,0.429. It is thus clear why the touch-dow
point for region I does not occur forB50.6 in Fig. 8.

It also follows from Fig. 3 and Figs. 5–7 that for the nonline
case, in general, such strong energy exchange will be notice
when a representative point lies inside the unstable region I.
course, to observe this in simulation of time response one ha

Fig. 10 Axial and swing response curves obtained from the
solution of Eqs. „2.4… and „2.5… for fixed support case „BÄ0…
with „k,b…Ä„0.8,1.4…. This point lies in the unstable region in
Fig. 3.
Transactions of the ASME
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solve numerically the original Eqs.~2.4! and ~2.5!. One example
is shown in Fig. 10 for the point (B,k,b)5(0,0.8,1.4) which lies
in the unstable region of Fig. 3.

To explain the existence of the other type of touch-down poin
substitute j 51 in ~4.18! to obtain k151.04B1/3/(324B), and
ls15(3/B)1/3. In this case,~4.19! translates into 0<B,0.75. For
the values ofB satisfying this inequality, numerical values ofk1
andls1 calculated from the expressions given above forj 51 are
found to match with the touch-down points shown in Figs. 7 a
8 for B50.4 and 0.6, respectively. It is also clear that the tou
down points corresponding toj 51 case will not occur forB,0
case~see Figs. 5 and 6!. In passing, we note that theoretically th
type of touch-down point also occurs forB50 at (k1 ,ls1
50,̀ ); hence could not be shown in Fig. 3. Consequently,
arrive at an interesting result that autoparametric resonance
exists for infinitesimally small motions when the linearized na
ral frequencies of the axial and the swing modes are equal to
other. Previous investigations on the linear spring pendulum in
cate the existence of such parametric instability. However, as
cluded@5#, in our case also this instability is of much less signi
cance compared with thej 52 case for the linearized axial an
swing motions. In general, however, for points lying within regi
II, small swing superimposed on finite axial motion is unsta
denoting a strong energy exchange behavior between the mo

The stability curves in Fig. 9 forB50.8 again shows a touch
down point for the unstable region I atk52.32, ls52.153. It
turns out that use ofj 50.445 in~4.18! yields, approximately, the
values of k and ls given above. Also,~4.19! yields 0.56<B
,0.871. As found earlier for thej 51 case, the autoparametr
resonance is also of little importance forj 50.445. For other val-
ues of B in the range 0.75<B,1 similar results are obtained
However, asB gets very close to 1, the range of values ofls
becomes much larger than the value 2.5. It is known that for s
large values of the stretch the tension-stretch relation corresp
ing to the neo-Hookean material is no longer valid. In fact, in
the results obtained so far, values of stretch greater than 2.5 h
have any physical relevance. Hence the caseB→1 is excluded
from this analysis.

In the stability maps for eachB,0, shown in Figs. 5 and 6, i
is observed that the boundary for unstable region II ends abru
at the point (k,ls)5(k* ,1.0) identified in Fig. 1. Thus, for a
given value ofB,0 and fork>k* , it turns out from these sta
bility maps that infinitesimal swing is unstable for arbitrary valu
of the initial extreme stretch,b; it is also unstable even for infini
tesimal uniaxial motion superimposed on a finite static stretch
is easy to show from~3.2! that for infinitesimally small motions,
the coefficient ofu is zero atk5k* . Hence fork.k* , this
coefficient is negative denoting unstable small swinging moti
as expected for an inverted pendulum.

For the values ofB,23 the touch-down points correspondin
to j 52 will not exist. AsB becomes more negative,k* reduces.
Only the unstable region of type II above the stability curve pa
ing through (k,ls)5(k* ,1.0) is found to exist for all such value
of B; it becomes wider asB becomes more negative. Conclusio
drawn are similar to those appear in the paragraph above. At
point it may be mentioned that a rigid simple inverted pendul
subjected to simple harmonic support motion can become st
for certain parameter combinations@15#. In our case more work is
necessary to investigate similar behavior for the inver
pendulum.

4.4 Role of Material Nonlinearity. It is shown by Olsson
@2# that unless the second-order terms that originate from the
metric nonlinearity are included in the equations of motion for
linear spring pendulum, parametric resonance cannot be capt
The presence of such higher-order terms yields the Mathieu e
tion for one of the independent coordinates. In the present c
inclusion of material nonlinearity results in the Hill’s equatio
Journal of Applied Mechanics
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The touch-down points in the stability curves automatically c
respond to the results obtained by Olsson@2# and others. Owing to
the presence of material nonlinearity two stability curves bran
out from these touch-down points. Also, additional unstable
gions exist for the values ofB used here. Hence, the results of th
investigation show that unlike the effect of geometric nonline
ity, material nonlinearity may give rise to unstable behavior
various values of the stiffness ratio,k and the extreme stretch,b
for a given value ofB. It is also found by numerical solution o
Eqs. ~4.1! and ~4.2! that the growth rate of unstable pendulu
mode increases when a representative point in the unstable re
lies away from the touch-down points inside the unstable regio

5 Concluding Remarks
This paper deals with the dynamic behavior of a nonline

spring pendulum with a support motion that is proportional to
axial response of the pendulum. Results are obtained for two
cial cases of motion. The first case deals with two uncoup
linear simple harmonic oscillators for infinitesimal motion of bo
the modes. The second case discusses the motion of the pend
bob for small swing superimposed on finite axial motion. T
stability for this special case helps one to identify the parame
combinations for which the original nonlinear system~2.4! and
~2.5! would show a strong energy exchange behavior between
modes.

Results show that autoparametric resonance between the
modes of motion exists when the linearized axial mode natu
frequency is twice that of the swing mode. Besides, forB.0,
autoparametric resonance, although considerably weak in na
also takes place for other values ofj including 1. Inside the un-
stable region of either type, strong energy exchange behavio
observed for finite axial motion. Finally, this study brings out t
usefulness of the stability criterion for the Mathieu-Hill equatio
used here.
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Micromechanics of Hysteresis
Loops of Fatigue in a Single
Crystal
Grain boundaries are susceptible to cause boundary corrosion, cracking, and cree
formation. Single crystals are presently used in turbine engines. A micromechanic a
sis is shown to explain the occurrence of highly localized plastic strain in the slip b
known as the shear band in metals under a monotonic loading. Based on the
analyses of fatigue bands in polycrystals, a micromechanic analysis of a single cr
under plane deformation is developed. The Bauschinger effect and hysteresis lo
these single crystals were calculated and shown. The calculated results agree gen
with experimental observations.@S0021-8936~00!02202-9#
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1 Introduction
Single-crystal nickel-based superalloys have been develope

eliminate the grain boundaries which are susceptible to ca
grain boundary corrosion, cracking, and creep deformation@1#.
These single crystals are presently used in turbine engine p
The prediction of fatigue life of these single crystals is of bo
scientific interest and practical need. This paper gives a metho
analyze single crystals under cyclic loading in plane deformat
This analysis is based on the extension of the micromech
high-cycle fatigue analysis of a face-centered-cubic~f.c.c.! poly-
crystal. This analysis is first shown to explain the formation
shear band under a monotonic loading, then to explain the gro
of fatigue band in a polycrystal under a cyclic loading, and fina
gives the analysis of fatigue band in high-cycle fatigue of a sin
crystal under plane deformation.

2 A Micromechanic Theory of Fatigue Crack Initia-
tion

Initial defects always exist in metals and cause an initial str
field t i . During loading, when the resolved shear stress in so
region reaches the critical shear stresst c, slip occurs. After un-
loading, this slip remains and induces a residual shear strest r .
Denoting the resolve shear stress caused by loading byt a, the
total resolved shear stress is then

t5t i1t a1t r . (1)

The governing condition to initiate or continue sliding is to ha
the resolved shear stress equal to the critical shear stress, i.e

t5t c , slip occurs (2a)

t,t c , no slip. (2b)

„i… Role of Microstress Field on the Formation of Fatigue
Band. When a piece of metal is uniformly loaded, slip line
appear on the surface. These slip lines are the results of hi
localized plastic deformation. This raises the question of why
plastic strain is so heterogeneous. To explain this highly het
geneous plastic deformation, the micromechanic shear stress
due to a uniform plastic straine129 in a thin slice~see Fig. 1! in an

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
ruary 17, 1998; final revision, October 1, 1999. Associate Technical Editor: J
Bassani. Discussion on the paper should be addressed to the Technical Edito
fessor Lewis T. Wheeler, Department of Mechanical Engineering, University
Houston, Houston, TX 77204-4792, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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isotropic infinite medium is analyzed. This analysis gives the
sidual shear stress@2# along thex1-axis as

t r5
4me129 wd

p~1y!

x1
22d22w2

~w21~x11d!2!~w21~x12d!2!
. (3)

This t r is positive outside the slice. Hence the width 2d of this
slice tends to increase. This explains why, in general, a slip b
rapidly widens, covering the whole crystal. Along thex2-axis, this
analysis gives a residual shear stress as

t r5
4me129 wd

p~12y! F12S x2

d D 2G . (4)

The thickness 2w is generally very small and approaches ze
The plastic straine129 required to yield a finite value oft r has to
be very large. This explains why the highly localized plastic str
occurs in thin slip bands in single-phase metal under unifo
loading. Hence, the combination of Eqs.~3! and ~4! explains the
formation of shear band under a monotonic loading. Equation~4!
not only shows the large plastic strain in the shear band, but
gives the negligible variation of the residual shear stress acros
thickness. This is referred to as the continuity of the resolv
shear stress field. This is important in explaining the ratc
mechanism in fatigue band, which will be explained later.

„ii … Fatigue Band Model. Under cyclic loadings, slip lines
appear on the surface~see Fig. 2!. After removing these slip lines
by electropolishing and recycling, original lines reappear. Th
slip lines are known as persistent slip bands~PSBs!, which are the
favorable sites of crack initiation. In the 1950s, thin ribbons p
truding out of fatigue specimen surface were discovered@3#.
These ribbons are known as extrusions. Negative extrusion, ca
intrusions, were also observed~see Fig. 3!. Based on the hints
supplied by these observations, a physical model was develo
for high-cycle fatigue crack initiation.

The physical model of fatigue crack initiation is shown in Fi
4~a!. The extrusion or intrusion is represented byR in this figure.

b-
L.

, Pro-
of
nal

Fig. 1 Shear band model
00 by ASME Transactions of the ASME
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The formation of an extrusion requires a positive shear straineab9
in P on the top and a negative shear strain inQ on the bottom of
the extrusionR. This can be caused by a positive initial she
stresst i in P and a negative initial shear stress2t i in Q. This
system of initial resolved shear stress in a segment can be ca
by a change of compressive stress inR, as shown in Fig. 4~b!.

Consider the segmentABCD in Fig. 4~b! having an initial ten-
sile straineaa

i ; i.e., this segment has an initial length longer th
the slot. Imagine that this segment is cut out and compresse
the same length as the slot, and then is welded back to the
under this imaginary compression. Since there is no such c
pression, this compression must be relieved by applying an e
and opposite force. This produces a compressive stresstaa on the
segment at the free surface, which pushes the segment out o
free surface, creating extrusion. Hence a set of positive sh
stress inP and negative inQ is produced by an initial tensile
strain inR. This initial tensile strain can be provided by a row o
interstitial dipoles@2,4#.

„iii … Ratchet Mechanism. With an initial tensile straineaa
i

in R ~see Fig. 4!, the initial shear stress inP, t P
i , is positive and

that ofQ, t Q
i , is negative. The shear stress due to the applied l

s22 is the same in the whole crystal, thust P
a 5t Q

a 5t a. Due to the
continuity of the residual shear stress field as given by Eq.~4!,
t P

r 5t Q
r 5t r . Consider the following sequence of loadings:

Fig. 2 Slip lines in polycrystalline nickel during two stages of
cyclic loading „†17‡…

Fig. 3 Instrusions and extrusions in copper during fatigue
„†17‡…
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1 First Cycle Forward Loading(t a.0): P slides, t 1 f
r ,0,

where the subscript ‘ ‘1f ’ ’ denotes the first forward loading.
Therefore,

tP5t P
i 1t a1t 1 f

r 5t c (5a)

tQ5t Q
i 1t a1t 1 f

r .2t c. (5b)

2 First Cycle Reversed Loading(t a,0): Q slides,t 1r
r .0.

Therefore,

tP5t P
i 1t a1t 1 f

r 1t 1r
r ,t c (6a)

tQ5t Q
i 1t a1t 1 f

r 1t 1r
r 52t c. (6b)

3 Second Cycle Forward Loading(t a.0): P slides,t 2 f
r ,0.

Therefore,

tP5t P
i 1t a1t 1 f

r 1t 1r
r 1t 2 f

r 5t c (7a)

tQ5t Q
i 1t a1t 1 f

r 1t 1r
r 1t 2 f

r .2t c. (7b)

4 Second Cycle Reversed Loading(t a,0): Q slides, t 2r
r

.0. Therefore,

tP5t P
i 1t a1t 1 f

r 1t 1r
r 1t 2 f

r 1t 2r
r ,t c (8a)

tQ5t Q
i 1t a1t 1 f

r 1t 1r
r 1t 2 f

r 1t 2r
r 52t c. (8b)

This process is repeated. A typical numerical result of the pla
strain distributions inP at different cycles of loading of the sur
face crystal is shown in Fig. 5. It is seen thatP always slides in
the positive direction andQ in the negative direction. The magni
tudes of these slips and hence the extrusions are monotonic
increasing.

„iv… Secondary Slip. The buildup of the slip straineab9 in P
andQ is caused byeaa

i in R. If R were cut out, the free length o

Fig. 4 Fatigue band model
JUNE 2000, Vol. 67 Õ 339
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R would be longer than the slot by an amount known as the st
extrusion@5#. The eaa

i causes an initial compression inR, which
in turn causes positivet ab

i in P and negativet ab
i in Q. Under

cyclic loading, the extrusion grows andR increases in length. This
elongation causes the compression inR to decrease. There are 1
slip systems in a f.c.c. crystal. The change of direct stresstaa in
R causes changes in resolved shear stress in all slip syst
When the decrease in compression inR becomes large, the ap
plied stress can cause a second slip system to have shear
reaching the critical value and slide. The plastic strainejh9 caused
by slip in this secondary slip system has atensorcomponenteaa9 ,
just like the initial tensile straineaa

i in causing the positive and
negativet ab

i in P andQ, respectively@6#. Hence with secondary
slip, the extrusion can grow considerably beyond the static ex
sion. The occurrence of the secondary slip system was rece
clearly observed@7#.

3 Experimental Verifications
This model has extensive metallurgical supports@2#, and two of

these supports are shown as follows:

„i… Slip Band Formation. An informative experiment on
slip band formation was made by Wood and Bender@8#. They
tested copper circular rod specimens subject to torsion. The sp
mens were electropolished and then scratched as markers w
pad carrying 0.5m diamond dust. Some specimens were subjec
alternate torsion and some subject to single twist through la
angles. The deformation in a typical slip band AB of a specim
subject to single twist is shown in Figs. 6 a, b, c are typic
scratches which were initially straight and continuous. It is se
that the single twist causes the scratches above AB to disp
relative to those below. Figure 7 shows the deformation un
cyclic torsion with scratches d, e, f and a typical fatigue band D
It is seen that the cyclic deformation caused no relative displa
ment of the scratches left and right of the fatigue band, but wit
the band the scratches have displaced equally up and down
ducing a zig-zag. A severely slid line with positive shear asP is
sandwiched in two less severely slid lines with negative sh
such asQ. This clearly verifies with the theory proposed.

„ii … Lattice Straining. X-ray reflection patterns of mono
tonically and cyclically loaded specimens are very different@9#.
The later retain the discrete spots like that of annealed me
while the former do not~Fig. 8!. This shows that slip occurrenc
in alternate loadings does not cause lattice straining in the bul
the metal. Under cyclic loading, the positive shear slip lines~like
P! are closely located with the negative one~like Q!. At some
distance from the slip lines, the stress field caused by positive
in P is balanced by that caused by negative slip inQ. Hence the
stress field and the lattice strain is small in the bulk of the me

Fig. 5 Typical plastic strain distribution under cyclic loadings
of aluminum
340 Õ Vol. 67, JUNE 2000
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Fig. 6 Initially straight scratches a, b, c are displaced unidirec-
tionally by static slip band AB. „Reproduced from Trans. Metal
Soc. AIME, 1962, courtesy of AIME. …

Fig. 7 Cyclic slip band CD produces no overall displacement
of scratches d, e, f. Within the slip band; the scratches are
displaced equally backward and forward. „The same as Fig. 6,
courtesy of AIME. …

Fig. 8 X-ray reflection patterns: „a… Sharp X-ray annealed
a-brass. „b… From same specimen as „a… after a unidirectional
strain 150 Ã50 deg twist. „c… From same specimen as „a… after
1500 reversals of plastic strain 1.5-deg twist and showing same
reflections as „a…. „Reproduced from the book Fracture , 1959,
courtesy of Technological Press, MIT. …
Transactions of the ASME
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Under monotonic loadings, the slip in all slip lines tends to be
of the same sign and causes a significant average plastic s
which causes an appreciable stress field and a lattice strain in
bulk of the metal. The above theory accounts for the differ
X-ray reflection patterns of the monotonically deformed and
clically deformed metals.

4 Single Crystals
The single-crystal nickel-based superalloys have been de

oped to eliminate the grain boundaries, which are susceptibl
grain boundary corrosion, cracking, and creep deformation@1#.
These single crystals are presently used in turbine engines.
prediction of high-cycle fatigue life of these single crystals is
practical need. The following shows the analysis of fatigue ba
of single crystals.

„i… Method of Analysis. A crystal embedded at the free su
face of the polycrystal under alternated tension and compres
is first analyzed, as shown in Fig. 4~a!. This solution gives surface
tractions on the grain boundary. In a single crystal, the surf
tractions are zero and hence must be removed by applying e
and opposite tractions on the boundary. The stress field cause
this equal and opposite tractions is analyzed by the finite elem
method.

Plastic strain is taken to occur only in the fatigue band. T
band is divided into a number of grids. The plastic strain in
left half of the crystal is denoted byei j9

(L) and in the right half by
ei j9

(R) . The solution of the stress field in Fig. 9~a! is the sum of the
solutions of Figs. 9~b!, ~c!, and ~d!. Figure 9~d! gives uniform
stress. The stress field due toei j9

(L) is solved by the semi-infinite
solid solution with the free surface at the left, as shown in Fig.
This solution yields the condition of zero traction at the free s
face and gives surface tractions on the right, top, and bot
Journal of Applied Mechanics
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planes~see Fig. 10~b!!. These tractions are removed by applyin
equal and opposite tractions, as shown in Fig. 10~c!. The plastic
strain in the grid is replaced by the equivalent forces@10# and the
stress field caused by these equivalent forces is solved by
finite element method. This equivalent force due toei j9

(L) is rela-
tively far from the considered crystal boundaries and hence
variation of the surface traction on the boundary is small, and t
the grids of the finite element method do not need to be very fi
This facilitates the finite element method solution. Similarly, f
the grid in the right half of the crystal, the free surface of t
semi-infinite solution is taken to be at the right side.

The initial strainei j
i has the same effect as plastic strainei j9 in

causing a stress field, so the initial strain can be analyzed in
same way as the plastic strain. This gives a method to calcu
the stress influence coefficient in themth grid caused by a unit
inelastic strain~either plastic strain or initial strain! in the nth
grid. The resolved shear stresst equals the sum of the initial stres
t i , the applied stresst a, and the residual stressest r (L)1t r (R).
Equating the resolve shear stresst to the critical shear stresst c

gives the incremental plastic strain distributions at different sta
of loading.

„ii … Experimental Observations of Fatigue Bands in Single
Crystals. Mecke and Blochwitz@11# observed the subgrain dis
placement in single nickel crystal under cyclic loading. The
experiments were carried out under constant plastic strain am
tudes at room temperature. It is shown that the PSBs have
etrated across the whole crystal and extruded out on both side
shown in Fig. 11. The case with extrusion protruding on one s
and intrusion on the other side was not observed. Basinski e
@12,13# tested copper single crystals at constant plastic strain
plitudes at room temperature under cyclic loadings. In these te
both extrusions and intrusions are observed. Zhai et al.@14,15#
Fig. 9 Procedure for decoupling the single crystal problem

Fig. 10 Removal of boundary tractions for a single crystal
JUNE 2000, Vol. 67 Õ 341
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performed fatigue experiments on aluminum single crystals un
constant cyclic stress amplitude. Again, both extrusions and in
sions were observed on the free surfaces.

„iii … Numerical Calculations. The analytical solution de-
veloped in previous sections is here applied to analyze the sin
crystal tests. To simplify the calculation, a single fatigue band
the single crystal is considered~the grain boundary shown in Fig
4~a! is now a free surface!. The analytical method can readily b
used to analyze multiple fatigue bands in the crystal. Referrin
Fig. 4~a!, bothP andQ are assumed to be 0.05mm in thickness,
and R to be 1.0mm. The crystal is f.c.c. and is assumed to
elastically isotropic with shear modulusm550 GPa and the Pois
son ratioy50.3. The critical shear stress,t c, is taken to be 200
MPa, and cyclic loadingt225399.55 MPa. An initial tensile strain
was assumed to vary linearly from a maximum value at the ce
to zero at the two ends of a 1.4 mm segment in the fatigue b
This segment was divided into a number of grids, and each

Fig. 11 Extrusions observed in single crystal †11‡
342 Õ Vol. 67, JUNE 2000
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was approximated by a uniform initial tensile strain. This assum
initial tensile strain distribution was found to give an initial re
solved shear stress,t i , quite uniform over each half of the fatigu
band. Thus a uniformt i of 0.5 MPa was used in the prese
analysis. The variations of the plastic strain inP andQ along the
length of the fatigue band at different cycles of loading are sho
in Fig. 12.

The widening of a slip band, i.e., the increase of ‘‘2d, ’ ’ has
been explained in the micromechanic analysis~see Eq.~3!!. This
gives the spread of the fatigue band toward the two free surfa
causing the protruding of extrusion on two sides. If the init
tensile strain in the above is replaced by an initial compress
strain, intrusions instead of extrusions will occur on both sid
The present model seems to explain the observed extrusions
intrusions.

„iv… Hysteresis Loops. This analytical model is used to ca
culate hysteresis loops of aluminum single crystals, with sh
modulusm526.5 GPa and Poisson ratioy50.3. The critical shear
stress,t c, is taken to be 0.369 MPa. A calculated hysteresis lo
is shown in Fig. 13. In the initial loading and unloading curve, t
elastic limit in unloading occurs at a positive normal stress, i.e.
positive resolved shear stress. This indicates a large Bausch
effect. The widths of the hysteresis loops have been found
decrease with the number of cycles, which agree with the exp
mental hysteresis loops of aluminum single crystals shown in F
14 @16#.
Fig. 12 Plastic strain distribution with initial strain at center. P & Q 8 and Q &
P8 are symmetrically located. Extrusions protruding out on both faces.

Fig. 13 Hysteresis loops of an aluminum single crystal
Transactions of the ASME
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5 Conclusions
For an extrusion to protrude, the shear strain inP has to be

positive and that inQ has to be negative near the occurrence
extrusion. This requires positive resolved shear stress inP and
negative inQ. In turn, this requires a compressive stress inR to
push the extrusion out. The occurrence of extrusion on both s
of the single crystal implies compression inR on both faces. Simi-
larly, for an intrusion to occur on the left side, the shear strain
P must be negative and that inQ must be positive. This requires
tensile stress inR to pull the intrusion in. A segment inR with an
initial compressive strain tends to increase the length of the ten
stress inR under cyclic loadings. The spread of the tension inR
over the length of the fatigue band will result in intrusions on bo
faces. Initial compression and initial tension may occur in
specimens. Hence extrusions on both faces and intrusions on
faces have been observed.

This single-crystal fatigue band analysis is for plane stra
which gives an approximate solution for the central length port
of the crystal. To remove the assumption of plane strain, a th
dimensional model is required. In the past year, an elastic-pla
boundary element method to analyze the fatigue bands and
teresis loops in an aluminum single crystal has been develo
The calculated results by the developed method check amaz
well with the aluminum single crystal fatigue test data recen
conducted by Zhai et al. in Oxford, England. These results w
appear inPhilosophical Magazine A~2000!. This study is essen
tial to improve the representation of the constitutive relation
single crystals and single crystal superalloys, which is import
to the design of engine parts made of single crystals.

Fig. 14 Experimental observation of hysteresis loops in alumi-
num single crystal „†18‡…
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Low-Gravity Sloshing in an
Axisymmetrical Container
Excited in the Axial Direction
The response of low-gravity propellant sloshing is analyzed for the case where an
symmetrical container is exposed to axial excitation. Spherical coordinates are us
analytically derive the characteristic functions for an arbitrary axisymmetrical con
container, for which time-consuming and expensive numerical methods have been u
the past. Numerical results show that neglecting the surface tension results in the u
estimation of the magnitude of the liquid surface oscillation. The reason for this is
plained by the influences of the Bond number and the liquid filling level on the cri
value of the coefficient of the excitation term in the modal equation, above which
oscillation is destabilized, and on the characteristic root of the destabilized system.
@S0021-8936~00!01502-6#
v

h

a

i
o

o
t
t

n

n

c

w

ing
al

n-
losh

ner
lysis
xial

the
en-
re-

en-

on-
on-

e-
ed

cus
s is

a-

d

se
the
n-

n
f
t
b

1 Introduction

The importance of low-gravity propellant sloshing in space
hicle operations is well recognized~@1#!. For recent large vehicles
in particular, the propellant contributes a non-negligible portion
the total mass of the vehicle, and therefore the importance
sloshing is accentuated.

The problem of low-gravity sloshing is characterized by t
dominant role of the surface tension of the liquid, which curv
the liquid surface strongly even in the undisturbed static ca
This curved static liquid surface, which is called the menisc
makes the problem geometrically more complicated than
sloshing problem under normal gravity, especially for an arbitr
axisymmetrical container with curved walls and top.

Several studies have been conducted for low-gravity slosh
For a cylindrical container, we can obtain analytical expressi
for the characteristic functions constituting the modal functions
the velocity potential and the liquid surface displacement~@2–6#!.
For an arbitrary axisymmetrical container, however, the charac
istic functions were not determined analytically in previous wo
~@7–12#!. Numerical procedures were applied instead, and
computation time and cost increased dramatically when the c
putational mesh was refined. To solve this problem, the au
~@13,14#! developed a new analytical method for determining
characteristic functions for an arbitrary axisymmetrical contain
The distinguishing feature of the method is the use of spher
coordinates whose origin is at the top of the cone that is tange
the container at the contact line of the meniscus with the conta
wall. This analytical method requires little computation time a
cost and also has the following advantages over numerical m
ods: ~i! the mathematical formulation allows the liquid surfa
and its dynamical displacement to be expressed as a single-va
function, even when the liquid surface curves strongly due to
surface tension in a low-gravity space environment;~ii ! the kine-
matic compatibility condition for the liquid surface displaceme
can be satisfied at the container wall since the liquid surface
placement at the wall can be made tangential to the container

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
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The method is thus a geometrically convenient means of solv
the low-gravity sloshing problem for an arbitrary axisymmetric
container.

In the previous papers~@13,14#!, the meniscus shape, the eige
frequency, and the responses of surface slosh motion and s
force and moment to lateral excitation of a spherical contai
were calculated. For engineering purposes, however, the ana
must be extended to the case of axial excitation, since the a
excitation can cause critical liquid surface oscillation when
excitation frequency is twice the eigenfrequency of the fundam
tal mode. The purpose of the present paper is to predict the
sponse of surface slosh motion to axial excitation and its dep
dency on the liquid filling level and the Bond number.

2 Computational Model
The geometry is defined as in Fig. 1, where an ellipsoidal c

tainer is drawn as a typical example of an axisymmetrical c
tainer. The container is subjected to the axial accelerationf̈ (t) in
the z-direction. The liquid domain and the container wall are d
noted byV and W, respectively. The undisturbed and disturb
liquid surfaces are represented byM and F, respectively. The
low-g sloshing is characterized by the strongly curved menis
M, which is a plane surface under normal gravity. The analysi
performed under the following assumptions:

1 The liquid motion is inviscid, incompressible, and irrot
tional.

2 The container is rigid.
3 The oscillatory displacement of the liquid surfacez from its

equilibrium positionM is small enough to be represente
within the framework of the linear theory.

3 Spherical Coordinate System
As shown in Fig. 1, spherical coordinatesR, u, andw are intro-

duced and the liquid surface displacementz is considered in the
R-direction. The originO is chosen as the apex of the cone who
side wall is tangent to the container wall at the contact line of
meniscus with the container wall. The origin is above the co
tainer forzC.b ~Case 1! and below otherwise~Case 2!. By using
the spherical coordinates, the meniscusM, the disturbed liquid
surfaceF, and the container wallW can be expressed as

M : R5RM~u!, (1)

F: R5RF~u,w,t !5RM~u!1z~u,w,t !, (2)

W: R5RW~u!. (3)
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Using the spherical coordinates has the merits mentioned in
Introduction. Note that only one component of the surface d
placement vector needs to be considered in order to satisfy
compatibility condition.

4 The Variational Principle
For the present problem, the variational principle can be writ

in the form

dE
t1

t2H E E E
V

~pl2pg!dV2E E
F
sdF

2E E
W1

s1dW12E E
W2

s2dW2J dt50, (4)

wherepl is the liquid pressure;pg is the gas pressure; ands, s1 ,
and s2 are the surface energy per unit area associated with
liquid-gas interfaceF, liquid-solid interfaceW1 , and gas-solid
interfaceW2 , respectively. The Lagrangian within braces can
derived as follows. When surface energy and gas pressure
neglected, the Lagrangian density equals the liquid pressure~@15#!
and therefore the Lagrangian becomes equal to***VpldV. From
this, we must subtract the potential energy due to the gas pres
pgV and that due to the surface energy in order to estimate
Lagrangian for the case under consideration here. The gas
sure is assumed to be constant, since the gas density is m
smaller than the liquid density.

5 Static Analysis
As a preliminary step to the dynamical slosh analysis, we m

determine the meniscus shapeRM(u). The variational principle
~4! can be reduced to the following principle of virtual work:

dU11dU21dU350, (5)

where

Fig. 1 Axisymmetrical container and coordinate systems
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dU15dE E E
Vst

~pl ,st2pg!dVst , (6)

dU252dE E
M

sdM, (7)

dU352dS E E
W1,st

s1dW1,st1E E
W2,st

s2dW2,stD . (8)

In Eq. ~6!, pl ,st is given by

pl,st5pC1r fg«@R cosu2RM~ ū !cosū #, (9)

where« is 1 and21, respectively, for Cases 1 and 2~Fig. 1!. This
expression is convenient for simultaneous mathematical des
tion of the two cases. Expressing Eqs.~6!–~8! in terms of the
virtual displacement of the meniscusdRM , we obtain

dU152E E
M

~pl ,st2pg!dRM cosgMdM, (10)

dU252E E
M

s div NMdRM cosgMdM

1«E
Cst

sdRM cosuCdCst , (11)

dU35«E
Cst

~s12s2!dRMdCst , (12)

whereNM is the unit normal vector of the meniscus pointing in
the liquid domain,gM is the angle betweenNM and theR direc-
tion, andCst is the static contact line. The transformation fro
Eq. ~6! into ~10! is based on the fact that the variation inVst
results from the virtual displacement of the meniscus in its norm
direction. The derivation of Eq.~12! from ~8! is due to the fact
that the variations inW1,st and W2,st are caused by the virtua
displacement of the meniscus at the contact lineCst . The first
term on the right side of Eq.~11! is the work done by the virtua
displacement in the direction normal to the meniscus. This w
can be evaluated by considering the variation of an infinitesim
surface element~Appendix A!. On the other hand, the work don
by the virtual displacement in the tangential direction of ea
surface element cancels out mutually over the surfaceM due to
the interaction between the adjacent surface elements, and red
to an integral along the contact lineCst ~the second term on the
right side of Eq.~11!!, which is combined withdU3 to yield the
contact angle condition as can be seen later~Eq. ~14!!.

Substituting Eqs.~10!–~12! into Eq. ~5!, we obtain

pl ,st2pg1s div NM50 on M , (13)

s cosuC1s12s250 along Cst . (14)

Equation~13! represents the equilibrium condition among the li
uid pressure, the gas pressure, and the surface tension of th
uid. Equation~14! is called the contact angle condition, since
requires that the contact angle between the meniscus and the
tainer wall takes a prescribed valueuC according to the magnitude
of the surface tensionss, s1 , ands2 . Using Eq.~1!, these con-
ditions can be expressed in terms ofRM(u) as ~Appendix B!

RMuu5
2RM

2 13RMu
2

RM
2

RMu

tanu

RM
2 1RMu

2

RM
2 2

~RM
2 1RMu

2 !3/2

RM

3H «~pg2pC!

s
2

r fg

s
@RM cosu2RM~ ū !cosū #J , (15)

RMu~ ū !5
2«RM~ ū !

tanuC
. (16)

A backward integration of Eq.~15! is used to obtain a solution
JUNE 2000, Vol. 67 Õ 345
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RM(u) having an arbitrary prescribed value atu5 ū and satisfying
Eq. ~16!. The value of unknown parameterpg2pC is determined
such thatRMu(0)50 by iterative computations.

Equation~15! is equivalent to the widely used Young-Laplac
equation, as is proved in Appendix C. Thus the variational p
ciple ~4! for the sloshing problem reduces to the conventiona
used equilibrium equations when the container is at rest.

6 Slosh Analysis

6.1 Governing Equations. In this section, governing equa
tions are derived from the variational principle~4!. By using the
pressure equation for unsteady flow,pl can be expressed in term
of the velocity potentialf describing the liquid motion relative to
the moving container:

pl5pC2r f H ]f

]t
1g«@RM~ ū !cosū2R cosu#

1~h2«R cosu! f̈ ~ t !1
1

2
~¹f!21Ġ~ t !J , (17)

where Ġ(t) is an arbitrary time function. Substituting Eq.~17!
into ~4! and applying the variation leads to~@14#!

E
t1

t2Fr fE E E
V
¹2fdfdV2r fE E

W
¹f•NWdfdW

2r fE E
F
S ]z

]t
cosgF2¹f•NFD dfdF

1E E
F
~pg2pl2s div NF!dz cosgFdF

1«E
C
~s cosuC8 1s12s2!dzdC

2r fdGE E
F

]z

]t
cosgFdFGdt50. (18)

Since the variationsdf, dz, anddG are arbitrary and independen
of one another, we obtain the field equation~19!, the boundary
conditions~20!–~23!, and the volume constant condition~24!:

¹2f50 in V, (19)

¹f•NW50 on W, (20)

]z

]t
cosgF2¹f•NF50 on F, (21)
346 Õ Vol. 67, JUNE 2000
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pg2pl2s div NF50 on F, (22)

s cosuC8 1s12s250 along C, (23)

E E
F

]z

]t
cosgFdF50. (24)

The Laplace equation~19! corresponds to the condition of cont
nuity within the liquid domain. Equation~20! means that the liq-
uid velocity in the direction normal to the rigid wall vanishe
Equations~21! and ~22! represent the dynamic and kinemat
boundary conditions on the liquid surface, respectively. Equa
~23! is the contact angle condition, which requires that the con
angle between liquid surface and container wall remains cons
during sloshing. Equation~24! shows that the liquid volume is
constant since the liquid is assumed to be incompressible. S
Eq. ~24! can be derived from the other kinematic conditions~19!,
~20!, and~21!, Eqs.~19!–~23! constitute the system of basic equ
tions which governs low-gravity sloshing. In the following anal
sis using the Galerkin method, the combined and integrated f
~Eq. ~18!! is more convenient than the separated form~Eqs.~19!–
~24!!.

6.2 The Variational Principle in Spherical Coordi-
nates. To solve the sloshing problem for an axisymmetrical co
tainer, it appears most convenient to express Eq.~18! in terms of
the spherical coordinates introduced in Section 3. We first exp
the following quantities in terms ofRF(u,w,t) and Rw(u) and
their u andw derivatives:

NF5«~eRRF sinu2euRFu sinu2ewRFw!/@~RF
21RFu

2 !

3sin2 u1RFw
2 #1/2, (25)

NW5«~eRRW2euRWu!/~RW
2 1RWu

2 !1/2, (26)

dF5RF@~RF
21RFu

2 !sin2 u1RFw
2 #1/2dudw, (27)

dW5RW~RW
2 1RWu

2 !1/2 sinududw, (28)

cosgF5NF•eR5«RF sinu/@~RF
21RFu

2 !sin2 u1RFw
2 #1/2

(29)

dC5RFuu5 ū sin ūdw, (30)

cosuC8 5~NF•NW!u5 ū . (31)

We then substitute Eqs.~25!–~31! into Eq. ~18!, use Eq.~2!, and
employ the linear approximation. We can thus obtain
r fE
0

2pE
0

ū
«E

RM

RW

¹2fdfR2 sinudRdudw2r fE
0

2pE
0

ū
«S ]f

]RU
R5RW

2
RWu

RW
2

]f

]u U
R5RW

D dfuR5RW
RW

2 sinududw

1r fE
0

2pE
0

ū
«S ]f

]RU
R5RM

2
RMu

RM
2

]f

]u U
R5RM

2
]z

]t D dfuR5RM
RM

2 sinududw1E
0

2pE
0

ū H «~pg2pC!

1r fg@RM~ ū !cosū2RM cosu#2sS0M~u!1«r f

]f

]t U
R5RM

1«r f f̈ ~ t !~h2«RM cosu!2r fz cosu@ f̈ ~ t !1g#

2sFS1M~u!z1S2M~u!
]z

]u
1S3M~u!

]2z

]u2 1S4M~u!
]2z

]w2G J dzRM
2 sinududw

1E
0

2pH s cosuC1s12s22«sFRM~RM
2 1RMu

2 !23/2S RM

]z

]u
2RMuz D G

u5 ū
J dzuu5 ūRM~ ū !sin ūdw50, (32)

where
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S0M~u!5RM
21~RM

2 1RMu
2 !23/2@2RM

3 13RMRMu
2 2RM

2 RMuu

2RMu~RM
2 1RMu

2 !cotu#,

S1M~u!5RM
22~RM

2 1RMu
2 !25/2@22RM

5 25RM
3 RMu

2 12RM
4 RMuu

2RM
2 RMu

2 RMuu1RMu~2RM
4 13RM

2 RMu
2 1RMu

4 !cotu#,
(33)

S2M~u!5RM
21~RM

2 1RMu
2 !25/2@3RMRMu~RMRMuu2RMu

2 !

2RM
2 ~RM

2 1RMu
2 !cotu#,

S3M~u!52RM~RM
2 1RMu

2 !23/2,

S4M~u!52~sinu!22RM
21~RM

2 1RMu
2 !21/2.

The static terms found from the fourth and fifth integrands
Eq. ~32!

«~pg2pC!1r fg@RM~ ū !cosū2RM cosu#2sS0M~u!

50 on M , (34)

s cosuC1s12s250 along Cst (35)

coincide with the formerly derived equilibrium conditions~13!
~Eq. ~B3!! and ~14! used to determine the meniscus shape. In
subsequent analysis, Eq.~32! is used as the basic equation for th
dynamic slosh analysis.

6.3 Dimensionless Parameters. For convenience in the
subsequent analysis and numerical calculation, the following
mensionless quantities are introduced:

f5
f*

~b* !2vch*
, z5

z*

b*
, f̈ ~ t !5

f̈ * ~ t* !

b* ~vch* !2 ,

$R,RM~u!,RW~u!%5
$R* ,RM* ~u!,RW* ~u!%

b*
, t5vch* t* ,

$S1M~u!,S2M~u!,S3M~u!,S4M~u!%

5~b* !2$S1M* ~u!,S2M* ~u!,S3M* ~u!,S4M* ~u!%,

$dF,dW%5$dF* ,dW* %/~b* !2,

v5v* /vch* , (36)

Bo5
r f* g* ~b* !2

s*
, (37)

whereb* ~Fig. 1! andvch* are the characteristic length and fr
quency, respectively. Note that dimensional quantities are dis
guished from the corresponding nondimensional ones by ad
an asterisk; i.e., an asterisk should be added to all the dimens
quantities, that have been used hitherto. Equation~37! defines the
Bond number Bo, which is the dimensionless parameter rela
the magnitude of gravity to surface tension. The characteri
frequency is defined by

vch* 5~g* /b* !1/2 for BoÞ0 ~g* Þ0! (38a)

vch* 5@s* /r f* ~b* !3#1/2 for Bo50. (38b)

6.4 Free Vibration Analysis. As a preliminary step to the
forced vibration analysis, the modal functions forf and z are
determined by a free vibration analysis. The solution to
Laplace equation

]2f

]R2 1
2

R

]f

]R
1

1

R2

]2f

]u2 1
cotu

R2

]f

]u
1

1

R2 sin2 u

]2f

]w2 50

(39)

must be expressed by a linear combination of characteristic fu
tions whose orthogonality is satisfied within the range 0<u<ū.
Since ū,p/2 ~see Fig. 1!, such orthogonality cannot be satisfie
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by the associated Legendre functions commonly used for sph
cal coordinates defined in the range 0<u<p. Hence, the charac
teristic functions must be derived anew here. Assuming a solu
in terms of separated variables

f~R,u,w,t !5X~R!Q~u!cosmweivt (40)

and substituting Eq.~40! into ~39! leads to

d2X

dR2 1
2

R

dX

dR
2

l

R2 X50 (41)

d2Q

du2 1cotu
dQ

du
1S l2

m2

sin2 u DQ50 (42)

wherel is the characteristic value to be determined later. Sub
tuting X5Ra into Eq. ~41! yields

a~a11!2l50. (43)

The solution to Eq.~42! is given by~Appendix B of @14#!

Q~u!5~12j2!m/2F~m2a,a1m11,m11,~12j!/2!

5~12j2!m/2

3H 11(
i 51

`
~m2a!~m2a11!.........~m2a1 i 21!

1323....3 i

3
~a1m11!~a1m12!.........~a1m1 i !

~m11!~m12!.......~m1 i ! S 12j

2 D iJ
(44)

where j5cosu and F denotes the Gaussian hypergeometric
ries. The characteristic valuel5lk (k51,2, . . . ) and thecorre-
sponding exponents~see Eq.~43!!

a1k5
212~114lk!

1/2

2
, a2k5

211~114lk!
1/2

2
(45)

are determined using the boundary condition

dQ

du
50 at u5 ū. (46)

This can be derived by considering the limitu→ ū of the bound-
ary condition on the container wall found from the second in
grand of the variational principle~~32!!

S 1

RWu

]f

]R
2

1

RW
2

]f

]u D U
R5RW~u!

50 ~0<u<ū! (47)

sinceuRWuu→` asu→ ū ~see Fig. 1!. Thus, the boundary condi
tion for the characteristic functionQk(u) can be determined by
the kinematic condition at the contact lineu5 ū, i.e., only ~46!,
instead of the condition throughout the container wall, i.e.,~47!.
Therefore, irrespective of the generatrix shape of the contai
the characteristic functionQk(u) can be analytically determined
by solving the boundary value problem constituted by Eqs.~42!
and~46!. In other words, the local satisfaction~46! of the bound-
ary condition~47! determines the characteristic functions and
lows us to employ the Galerkin method to satisfy the overall c
dition ~47! by constituting an admissible function of the veloci
potential using the characteristic functions~Eq. ~48!!.

ExpressingQk(u) in terms of the Gaussian hypergeometric s
ries ~Eq. ~44!! is helpful for examining the convergence of th
series solution. The Gaussian hypergeometric seriesF(a,b,g,x)
converges for arbitrary values ofa, b, and g, provided thatuxu
,1. Hence, solution~44! converges for 0<u,p. In the present
analysis, we have 0<u<ū, whereū,p/2, as can be seen from
Fig. 1. Therefore, convergence of solution~44! is ensured.
JUNE 2000, Vol. 67 Õ 347
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By linear combination of the characteristic functions, the velo
ity potential and the liquid surface displacement can be expre
as

f~R,u,w,t !5 iv(
k51

` H akS R

l a
D a1k

1bkS R

l b
D a2kJ Qk~u!cosmweivt,

(48)

z~u,w,t !5(
k51

`

ckQk~u!cosmweivt (49)

whereak , bk , and ck are arbitrary real constants andl a and l b
are normalization parameters introduced to improve the con
gence of series~48!. Namely, with the increase ofk, lk→`, i.e.,
a1k→2` and a2k→` ~Eq. ~45!!, so thatl a and l a are, respec-
tively, the minimum and maximum ofR considered, which is
RM(u) andRW(u) (0<u<ū).

Equation~49! is obtained by imposing

]z

]uU
u5 ū

50 (50)

as a dynamical contact line condition. This is an approxim
method, but it introduces only a small error even for a small st
contact angleuC by virtue of the special way the spherical coo
dinates are used in the present study~Appendix C of@14#!.

We can obtain the frequency equation by substituting Eqs.~48!
and ~49! into ~32! and neglecting the excitation term. Using th
Galerkin method while considering variation with respect toak ,
bk , andck yields algebraic homogeneous equations forak , bk ,
and ck . These can be reduced to a standard eigenvalue prob
for ck :

~2v2M1K !c50 (51)

where

c5$c1 ,c2 ,c3 , . . .ck̄%
T. (52)

Representations ofM andK in terms of the nondimensional quan
tities introduced in Eqs.~36! and~37! are presented in the author
previous report~@15#!. The dimension of Eq.~51! is k̄, at which
the summation in Eqs.~48! and~49! is truncated. The solution to
Eq. ~51! gives the eigenfrequencies and the eigenmodes.

The dimensionk̄ of the eigenvalue problem~51! required for
obtaining a sufficiently converged solution is low~@15#! due to the
orthogonality of the characteristic functionQk , and therefore the
present analysis requires only a small amount of computation
and cost. The analytical derivation of the characteristic funct
Qk and the rapid convergence of its constituting series~Eq. ~44!!
are helpful for fast computation.

6.5 Modal Equation for Axial Excitation. The purpose
here is to study the parametric resonance for the case wher
excitation frequency is close to twice the fundamental modal
quency withm51. Hence, we may expressf and z in terms of
their fundamental modal functions~48! and ~49! determined in
Section 6.4:

f~R,u,w,t !5q̇~ t !(
k51

` H akS R

l a
D a1k

1bkS R

l b
D a2kJ Qk~u!cosw,

(53)

z~u,w,t !5q~ t !(
k51

`

ckQk~u!cosw, (54)

whereq(t) denotes the modal coordinate. The ratios among
constantsak , bk , and ck are determined in the free vibratio
analysis. Substituting Eqs.~53! and~54! into the variational prin-
ciple ~32! and considering the variation with respect toq(t) leads
to the following modal equation
348 Õ Vol. 67, JUNE 2000
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M0q̈1@K01K1 f̈ ~ t !#q50, (55)

whereM0 , K0 , andK1 are given in Appendix D. Introducing the
modal damping ratiozd modifies Eq.~55! to

q̈12zdvq̇1@v21Q f̈~ t !#q50 (56)

where

v25
K0

M0
, Q5

K1

M0
. (57)

6.6 Critical Value Qcr. The amplitude of the liquid surface
displacement can increase with time due to the parametric r
nance. Let us estimate the critical value ofQ, above which the
response increases with time, under the condition that the ex
tion frequency 2v f is close to 2v. We express the excitation an
solution as

f̈ ~ t !5 f 0 sin 2v f t, (58a)

q~ t !5a cosv f t1b sinv f t, (58b)

q̇~ t !52v fa sinv f t1v fb cosv f t, (58c)

q̈~ t !5~2v f
2a1v f ḃ !cosv f t2~v f

2b1v f ȧ !sinv f t, (58d)

where

v f>v (59)

anda andb are gradually varying time-dependent functions. Su
stituting Eq.~58! into ~56! and using a harmonic balance metho
leads to the following system of differential equations fora and
b:

~v22v f
2!a1v f ḃ1S 2zdv fv1

1

2
Q f0Db50, (60a)

2v f ȧ1S 22zdv fv1
1

2
Q f0Da1~v22v f

2!b50. (60b)

Substituting

~a,b!5~a0 ,b0!est (61)

into Eq. ~60! yields the following characteristic equation fors:

As21Bs1C50, (62)

where

A5v f
2, (63a)

B54zdvv f
2, (63b)

C5~2zdv fv!22S 1

2
Q f0D 2

1~v f
22v2!2. (63c)

The system is unstable when either of the roots of Eq.~62! has a
positive real part~B.0 excludes the case where both of the roo
have positive real parts!. Hence, the conditionC,0 gives the
following critical value:

Qcr5
4zdv2

f 0
(64)

under the approximation~59!. The unstable root can be calculate
from Eq. ~62! as

s1522zdv1
Q f0

2v
. (65)

7 Numerical Results
Figures 2 and 3 show the meniscus shape and the eige

quency, respectively, for the case of a spherical container an
contact angle of five deg between meniscus and container w
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These results were shown and discussed in a previous p
~@14#!. They are presented again here in order to facilitate
discussion of the numerical results for the liquid surface displa
ment given below. It can be seen from Fig. 2 that when the B
number Bo is large, the menisci are almost flat except in
vicinity of the container wall. The menisci tend to exhibit mo
spherical shapes when the Bond number is decreased.

Figure 4 shows the eigenfrequency for the case Bo50 (g*
50, see Eq. ~37!!. Because the characteristic frequen
(g* /b* )1/2 used in Fig. 3 becomes zero in this case, an alterna
characteristic frequency@s* /r f* (b* )3#1/2 is employed.

In Appendix E, the influence of the contact angle on the eig
frequency is examined for the cases of Bo50 and Bo51.

As a test for the accuracy of the present method, the nume
results obtained in the present study are compared with resul
previous literature. The meniscus shape determined by this an

Fig. 2 Shape of meniscus for various Bond numbers and di-
mensionless z-coordinates of contact line

Fig. 3 Dimensionless eigenfrequency vÄv* Õvch* „v* is the
dimensional eigenfrequency, vch* is the characteristic fre-
quency given by vch* Ä„g * Õb * …1Õ2

…

Journal of Applied Mechanics
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sis is shown in a figure taken from a paper by Dodge et al.@10#
~Fig. 5!. Complete agreement can be confirmed. In Fig. 6,
present theoretical predictions for the eigenfrequency are c
pared with the previous theoretical and experimental results. G
agreement can be observed. The agreement between the the
cal results obtained by the author and by Concus et al.@8# is so
good that the two curves cannot be distinguished.

Figure 7 shows the magnitude of the dimensionless liquid s
face displacementuzu at the container wall (u,w)5( ū,0) and at
the time five periods after the initial timet50 for a spherical
container subjected to sinusoidal axial acceleration of amplit
0.5g* and angular frequency 2v* . The response is calculated b
solving Eq.~56! for the initial conditionz( ū,0,0)50.01 using the
Runge-Kutta-Gill method. The modal damping ratio is assume
be 0.01. It can be seen from Fig. 7 that the analysis for Bo→`,
which does not take into account the surface tension effect at
fails to predict the dependence of the response on the liquid fil
level zC , and consequently underestimates the magnitude of
liquid surface oscillation for largezC . For small Bo andzC , on
the other hand, the magnitude of the response is smaller than
prescribed initial valuez( ū,0,0)50.01, i.e., the system is not
destabilized.

To consider the reason for these results, the following two
rameters

Q

Qcr
5

Q f0

4zdv2 , (66)

Fig. 4 Dimensionless eigenfrequency vÄv* Õvch* for the case
BoÄ0 „v* is the dimensional eigenfrequency, vch* is the char-
acteristic frequency given by vch* Ä†s* Õr f* „b * …3

‡

1Õ2

Fig. 5 Comparison of the present and the previous results for
the meniscus shape „78 percent, 50 percent, and 25 percent
filling levels for Bo Ä1 and Bo Ä2; ucÄ5 deg; d, present analy-
sis; analysis by Dodge et al. †10‡
JUNE 2000, Vol. 67 Õ 349
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2v2 (67)

are calculated from Eqs.~64! and ~65! and are shown in Figs. 8
and 9, respectively. It can be seen that the variations of th
parameters withzC and Bo exhibit a tendency similar to the d
pendence of the magnitude of the response onzC and Bo shown in
Fig. 7. Independence of the parameters~66! and~67! of zC for the
case Bo→` can be explained as follows. For the case Bo→`, the
relationK05K1 holds as can be seen from Eqs.~D2! and~D3!, so
that from Eq.~57!

Fig. 6 Comparison of the present and the previous results for
the eigenfrequency. „a… , present analysis and theoretical
prediction by Concus et al. †8‡ both for ucÄ0 deg; d, experi-
ment by Coney and Salzman †17‡. „b… , present analysis; d,
experiment by Dodge and Garza †9‡.

Fig. 7 Dimensionless magnitude of liquid surface displace-
ment zzz at „u,w,t …Ä„ū,0,10pÕv…
350 Õ Vol. 67, JUNE 2000
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Q5v2 for Bo→`. (68)

Therefore, the two parameters~66! and~67! do not depend onzC .
For small Bo andzC , Q/Qcr is smaller than unity~Fig. 8! ands1
is negative~Fig. 9!. Hence, the system is stable and the magnitu
of the response shown in Fig. 7 is smaller than the prescri
initial value z( ū,0,0)50.01.

Let us consider the physical reason why the analysis
Bo→`, which neglects the surface tension effect, underestim
the magnitude of the dynamical displacement of the liquid surf
for largezC . We attribute the reason to the marked decrease ofv2

in Eqs. ~66! and ~67! with the decrease of Bo from infinity~see
Fig. 3!. This decrease inv2 is due to the fact that the kinetic
energy of the liquid increases andM0 in Eq. ~57! increases. To
comprehend this intuitively, we express the kinetic energy
terms of a surface integral over the meniscus using Green’s t
rem and Eq.~20!:

Fig. 8 Coefficient of excitation term Q in modal Eq. „56… nor-
malized by its critical value Qcr

Fig. 9 Characteristic root s 1 normalized by dimensionless
eigenfrequency v
Transactions of the ASME
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~¹f!2dV5

1

2 TM1W
f

]f

]N
dS5

1

2 EEM
f

]f

]N
dM.

(69)

The value of the integral is greatly influenced by the area of
meniscus. The area becomes much larger for a finite Bond num
than for an infinite one, for which the meniscus is reduced to
planez5zC ~see Fig. 2!. It should be noted here that the larg
difference in the area for finite and infinite Bond numbers is d
to the very small contact angle between the meniscus and
container wall~@16#! and the large tilt of the container wall from
the vertical direction~i.e., parallel to thez-axis! nearz52.

Figure 10 shows the results for the case where the Bond n
ber is exactly zero and the amplitude of the axial acceleratio
0.5b* (vch* )250.5s* /r f* (b* )2 ~see Eq.~38b!!. Here again, it can
be confirmed that the dependence of the magnitude of the liq
surface displacement onzC ~Fig. 10~a!! can be explained by the
variations in the parameters~66! and~67! with zC ~Figs. 10~b! and
10~c!!. For largezC , the increase in these parameters with t
increase inzC is more marked for Bo50 than for BoÞ0 ~Figs. 8
and 9!. This is because for Bo50, v2 in the denominators on the
right sides of Eqs.~66! and~67! decreases monotonically with th
increase inzC ~Fig. 4!. Note that the effect ofv is raised to the
second power in Eqs.~66! and~67!. On the other hand, even for
relatively small but nonzero Bond number Bo51, the eigenfre-
quencyv increases up with increasingzC for large zC ~Fig. 3!.
This is due to the fact that the remaining gravity effect is acc

Fig. 10 Results for the case Bo Ä0; „a… dimensionless magni-
tude of liquid surface displacement zzz at „u,w,t …
Ä„ū,0,10pÕv…; „b… coefficient of excitation term Q in modal Eq.
„56… normalized by its critical value Qcr ; „c… characteristic root
s 1 normalized by dimensionless eigenfrequency v
Journal of Applied Mechanics
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tuated compared to the surface tension effect whenzC is in-
creased, and consequently the ratio@liquid volume#/@meniscus
area# becomes large. Monotonic increase in the natural freque
with the increase in the liquid depth is a typical characteristic
gravity waves, as can be seen from the result for the case Bo→`
~Fig. 3!.

8 Summary and Conclusions
The problem of low-gravity propellant sloshing in an axisym

metrical container subjected to axial excitation is formulated b
variational principle and is solved analytically by a modal analy
method. The use of spherical coordinates enables us to ana
cally derive the characteristic functions for an arbitrary axisy
metrical container. Numerical results show that neglecting the
face tension leads to failure to predict the dependency of
response of the liquid surface displacement on the liquid fill
level and underestimation of the magnitude of the liquid surfa
oscillation for high liquid filling levels. This result is explained b
the influences of the Bond number and the liquid filling level
the critical value of the coefficient of the excitation term in th
modal equation and the unstable characteristic root.

This paper did not consider the case in which all of the inter
wall surface of the container contacts the liquid and the liq
surrounds the gas completely. The present method can be
tended to such a case by altering the position of the origin of
spherical coordinates to an arbitrary position within the gas reg
and by using the associated Legendre polynomials, which are
thogonal within 0<u,p, instead of the characteristic function
derived in the present study. Such an extension is planned
future work by the author.

Nomenclature

ak , bk 5 coefficients in modal functions for velocity po-
tential ~Eq. ~48!!

Bo 5 Bond number
b 5 half height of container~characteristic length,

Fig. 1!
C 5 contact line
ck 5 coefficients in modal functions for liquid surface

displacement~Eq. ~49!!
eR , eu , ew 5 unit vectors inR, u, andw-directions

F 5 disturbed liquid surface~Fig. 1!
f̈ (t) 5 acceleration of container inz-direction

g 5 gravitational acceleration
h 5 z-coordinate of the originO of spherical coordi-

nates
k 5 characteristic value and function number
k̄ 5 number of characteristic functionsQk taken into

account
l a , l b 5 normalization parameters~Eq. ~48!!

M 5 meniscus~undisturbed liquid surface, Fig. 1!
NF 5 unit normal vector of F pointing into liquid

domain
NM 5 unit normal vector ofM pointing into liquid

domain
NW 5 unit normal vector ofW pointing outwards from

liquid domain
pC 5 static liquid pressure at contact line
pg 5 gas pressure
pl 5 liquid pressure

pl ,st 5 static liquid pressure
q(t) 5 modal coordinate

R, u, w 5 spherical coordinates~Fig. 1!
RF(u,w,t) 5 function expressing shape of disturbed liquid

surfaceF ~Fig. 1!
RM(u) 5 function expressing shape of meniscusM

~Fig. 1!
RMu , RMuu 5 dRM /du, d2RM /du2
JUNE 2000, Vol. 67 Õ 351
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RW(u) 5 function expressing shape of container wall
~Fig. 1!

RWu 5 dRW /du
S0M2S4M 5 u-dependent functions~Eq. ~33!!

V 5 liquid domain~Fig. 1!
W 5 container wall~Fig. 1!

W1 , W2 5 liquid-solid and gas-solid interfaces, respective
zC 5 z-coordinate of contact line
z0 5 z-coordinate of meniscus bottom~u50!

a1k , a2k 5 characteristic exponents~Eqs.~45! and ~48!!
gF 5 angle betweenNF andR-direction
gM 5 angle betweenNM andR-direction

« 5 1 and21, respectively, for Cases 1 and 2
~Fig. 1!

z 5 liquid surface displacement~Fig. 1!
Qk 5 characteristic function determined by Eqs.~42!

and ~46!
ū 5 maximum value ofu ~Fig. 1!

uC 5 contact angle between meniscus and containe
wall

uC8 5 contact angle between disturbed liquid surface
and container wall

lk 5 characteristic value determined by Eqs.~42! and
~46!

r f 5 liquid density
s, s1 , s2 5 surface energy per unit area associated with

liquid-gas, liquid-solid, and gas-solid interfaces
respectively

f 5 velocity potential~motion relative to the
container!

v 5 eigenfrequency
vch 5 characteristic frequency

Appendix A

Derivation of the First Term on the Right Side of Eq.
„11…. This derivation is based on the fact that the variati
d(dM) in the surface element due to the virtual displacem
dRM cosgM in the direction normal to the meniscus can be e
pressed by

d~dM!5div NMdRM cosgMdM. (A1)

This can be proved by expressing divNM as the limit of a surface
integral, i.e.,

div NM5 lim
D→0

H T
A

NM•ndA/DJ (A2)

whereD is an arbitrary volume including pointP in which the
vectorNM is erected,A is the closed surface bounding volumeD,
andn is the outer normal unit vector of surfaceA. Let volumeD
be the domain which the surfacedM penetrates during the virtua
displacementdRM cosgM from dM to dM85dM1d(dM) ~see
Fig. 11!. Then, the inner productNM•n is 21 on dM,
cos(dRMudu)>1 on dM8, and 0 onA2dM2dM8 ~i.e., on the
entire remaining portion ofA, exceptdM and dM8!, while D
5dMdRM cosgM . So, Eq.~A2! gives

div NM5
dM82dM

dMdRM cosgM
5

d~dM!

dMdRM cosgM
, (A3)

which is identical to Eq.~A1!.

Appendix B

Derivation of Eq. „15… From Eq. „13…. Equation~1! can be
expressed as

f ~R,u!5R2RM~u!50. (B1)

ThereforeNM can be determined by
352 Õ Vol. 67, JUNE 2000
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NM5« gradf /ugradf u5«~eRRM2euRMu!/~RM
2 1RMu

2 !1/2.
(B2)

Substituting Eqs.~9! and ~B2! into Eq. ~13! gives

«~pg2pC!1r fg@RM~ ū !cosū2RM cosu#

2sRM
21~RM

2 1RMu
2 !23/2@2RM

3 13RMRMu
2

2RM
2 RMuu2RMu~RM

2 1RMu
2 !cotu#. (B3)

Solving Eq.~B3! with respect toRMuu leads to Eq.~15!.

Appendix C

Proof of Equivalence of Eq. „15… to Young-Laplace Equa-
tion. The Young-Laplace equation is given by

pg2pl ,st5sS 1

R1
1

1

R2
D , (C1)

where R1 and R2 are the principal radii of the meniscus. Th
directions of the principal curvatures are theu and w-directions,
due to the axisymmetry of the meniscus. Hence, we have

1

R1
5

d

ds S tan21
dz

dr D5
d

du S tan21
dz/du

dr/du D • du

ds

5
d

du S tan21
dz/du

dr/du D •F S dr

du D 2

1S dz

du D 2G21/2

, (C2)

1

R2
5

1

r

dz

ds
5

1

r

dz

du

du

ds
5

1

r

dz

du F S dr

du D 2

1S dz

du D 2G21/2

, (C3)

wheres denotes the arc length (ds5@(dr)21(dz)2#1/2). On the
meniscus, the following relation holds:

r 5RM~u!sinu, z5h2«RM~u!cosu. (C4)

Using Eq. ~C4! and the formula (d/dx)tan21 x51/(11x2), we
express the principal curvatures~C2! and ~C3! in terms of the
functionRM(u). Substituting the resulting equations into Eq.~C1!
leads to Eq.~15!.

Appendix D

Coefficients in Modal Equation „55…. The coefficients in Eq.
~55! are represented by

M05(
k51

`

(
l 51

` E
0

ū
$akalM̄0aa~k,l !1akbl@M̄0ab~k,l !1M̄0ba~ l ,k!#

1bkblM̄0bb~k,l !1akcl@M̄0ac~k,l !1M̄0ca~ l ,k!#

1bkcl@M̄0bc~k,l !1M̄0cb~ l ,k!#%du, (D1)

Fig. 11 Virtual displacement dRM cos gM in direction normal to
the meniscus M considered for derivation of Eq. „A1…
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K05(
k51

`

(
l 51

` H E
0

ū
ckclK̄0cc~k,l !du1ckclK̂0cc~k,l !J , (D2)

K15(
k51

`

(
l 51

` E
0

ū
ckclK̄1cc~k,l !du (D3)

where

M̄0ab~k,l !5« f akS RW

l a
DQk

3sinuH RW
2 f b l8 S RW

l b
D 1

l b
Q l2RWu f b l S RW

l b
DQ l8J

2« f akS RM

l a
DQk sinuH RM

2 f b l8 S RM

l b
D 1

l b
Q l

2RMu f b l S RM

l b
DQ l8J

for

~a,b!5~a,a!,~a,b!,~b,a!,~b,b!; (D4)

M̄0ac~k,l !5«RM
2 sinu f akS RM

l a
DQkQ l , (D5)

M̄0bc~k,l !5«RM
2 sinu f bkS RM

l b
DQkQ l , (D6)

M̄0ca~k,l !5M̄0ac~ l ,k!, (D7)

M̄0cb~k,l !5M̄0bc~ l ,k!, (D8)

K̄0cc~k,l !52RM
2 sinuQk@m1Q l cosu1m2~S1MQ l

1S2MQ l81S3MQ l92m2S4MQ l !# (D9)

K̂0cc~k,l !52m2@RM
2 ~RM

2 1RMu
2 !23/2Qk

3sinu~RMQ l82RMuQ l !#u5 ū , (D10)

K̄1cc~k,l !52RM
2 sinuQkQ l cosu, (D11)

with

f ak~x!5xa1k, f bk~x!5xa2k, (D12)

m151 ~ for BoÞ0!, m150 ~ for Bo50!, (D13)

m25
1

Bo
~ for BoÞ0!, m251 ~ for Bo50!. (D14)

Appendix E

Discussion on Eigenfrequency for Small Bond Num-
bers. Figure 12 examines the influence of the contact angleuC
on the eigenfrequency for the cases of Bo50 and Bo51. It can be

Fig. 12 Influence of contact angle on the eigenfrequency
Journal of Applied Mechanics
seen from Fig. 12 that for Bo50 anduC50 deg, the fundamenta
eigenfrequency is close to zero~the eigenvalue, i.e., the square
the eigenfrequency, is smaller, but exact zero eigenvalue was
obtained due to limitation of the numerical accuracy of the co
putation!. This is because the liquid surface can be given a rig
body displacement that does not change the surface energy. S
such a rigid-body model is approximately valid for Bo51, uC
50 deg, and small values ofzC , the eigenfrequencyv* for such
cases is close to @s* /r f* (b* )3#1/2. This is equal to
@g* /Bo b* #1/25@g* /b* #1/2, which is the eigenfrequency of th
pendulum supported atz* 5b* and having a mass atz* 50.
These results foruC50 deg compare well with the results given
Concus et al. @8#, which shows the values of (v* )2/(1
1Bo!@s* /r f* (b* )3#. For a contact angle of 5 deg, the eigenfr
quency increases markedly with the decrease in the liquid fill
level zC both for Bo50 and Bo51. To examine the physical rea
son for this result, the value of 1/M ~M is the area of the menis
cus! was computed as a function ofzC and shown in Fig. 13. It
can be seen from Figs. 12 and 13 that the variations of the eig
frequency and 1/M with zC exhibit a similar tendency. This mean
that for the case ofuC55 deg, the liquid surface behaves as
membrane subjected to tension and bounded by the conta
wall. If the eigenfrequency is shown as a function of fill fractio
instead ofzC ~Fig. 14!, the difference between the results fo
Bo50 and Bo51 becomes larger except for extremely low liqu
filling levels, where the meniscus is very slender and therefore
influence of the gravity force on the eigenfrequency is very we
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The Probabilistic Solutions to
Nonlinear Random Vibrations
of Multi-Degree-of-Freedom
Systems
The probability density function of the responses of nonlinear random vibration
multi-degree-of-freedom system is formulated in the defined domain as an expon
function of polynomials in state variables. The probability density function is assum
be governed by Fokker-Planck-Kolmogorov (FPK) equation. Special measure is tak
satisfy the FPK equation in the average sense of integration with the assumed fun
and quadratic algebraic equations are obtained for determining the unknown probab
density function. Two-degree-of-freedom systems are analyzed with the proposed m
to validate the method for nonlinear multi-degree-of-freedom systems. The proba
density functions obtained with the proposed method are compared with the obtai
exact and simulated ones. Numerical results showed that the probability density fun
solutions obtained with the presented method are much closer to the exact and sim
solutions even for highly nonlinear systems with both external and parametric excitat
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1 Introduction
Practical problems are frequently formulated as multi-degr

of-freedom systems with random excitations. Therefore, the p
lems of nonlinear random vibrations of multi-degree-of-freed
systems were proposed in many areas of science and engine
However, it is known that even the solution of a nonlinear sing
degree-of-freedom system has challenged many researchers
past decades. One of the key difficulties in nonlinear random
brations lies in the determination of the probability density fun
tion of system responses because the reliability and some o
statistical analyses are based on it. Even if the probability den
function solution to nonlinear random vibration is governed by
Fokker-Planck-Kolmogorov~FPK! equation, it is still difficult to
obtain the exact probability density function solution if the syst
is nonlinear or there is parametric excitation. Therefore, so
methods were proposed for the approximate probability den
function solution to nonlinear random vibrations of multi-degre
of-freedom systems. The most frequently used approxima
method is the equivalent linearization or Gaussian closure pr
dure~@1–4#!. However, this method is considered unsuitable wh
the system is highly nonlinear, or when parametric random e
tations are present, because in either case the probability dist
tion of the system response is usually far from being Gaussian
improve the accuracy of an approximate solution, a non-Gaus
closure method was used~@5–6#!. With this method, the probabil
ity density function of the system responses is approximated w
the Gram-Charlier series or Hermite polynomial. As is known,
series is not consistent with a probability theory, e.g., nega
probability may result. The stochastic average method is ano
method for the probability density function solution of respon
amplitudes of nonlinear systems. It is suitable for the wea
damped systems with weak excitations~@7#!. The principle of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
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maximum entropy was attempted for an approximate probab
density function solution to nonlinear random dynamic syste
~@8#!; however, highly nonlinear algebraic equations must be f
mulated and solved in the determination of the parameters w
this method and it is difficult to extend for multi-degree-o
freedom problems. Another method called the multi-Gaussian
sure method was proposed with which an approximate PDF
constructed with a linear superposition of some Gaussian P
~@9#!. Such an approximate probability density function satisfi
the non-negativity condition. With this method, the approxima
probability density function agrees well with exactly one even
the tails of the probability density function. However, highly no
linear algebraic equations need to be solved, which is a ted
problem. Numerical simulation is versatile~@10–12#!, but the
computational effort with it is usually unacceptable for estimati
the probability density function solution of the system respons
specially for small probability problems. As a result, the proble
of nonlinear random vibrations of multi-degree-of-freedom s
tems or solving the FPK equation in higher dimension have
tracted much attention in the last decades.

Recently, a new method was reported for nonlinear rand
systems and applied to a nonlinear random single-degree
freedom system~@13#!. In this paper, the method is extended a
applied to the probability density function solutions for nonline
random vibrations of multi-degree-of-freedom systems or the
lution to the FPK equation in a higher dimension. With th
method, the probability density function of the responses of n
linear random multi-degree-of-freedom systems is assumed,
given domain, to be an exponential function of a polynomial
state variables. Special measure is taken such that the FPK e
tion is satisfied in the average sense of integration with the
sumed probability density function. The problem of determini
the parameters in the approximate probability density funct
finally results in solving simultaneous quadratic algebraic eq
tions. The nonlinear random vibrations of two highly nonline
two-degree-of-freedom systems are analyzed with the propo
method. Numerical results are provided and compared with
tainable exact probability density function solutions to show
effectiveness of the proposed method for highly nonlinear mu
degree-of-freedom systems. In the case that no exact solutio
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obtainable for a nonlinear two-degree-of-freedom system w
both external and parametric excitations, the Monte Carlo sim
tion is conducted to obtain the simulated probability density fu
tion solution. The presented method is further validated by
comparison of the probability density function obtained with t
presented method and simulated ones.

2 Problem Formulation
We consider the following problem of nonlinear random vibr

tions of a multi-degree-of-freedom system:

Ÿi1hi0~Y,Ẏ!5hi j ~Y,Ẏ!Wj~ t ! i 51,2,...,ny ; j 51,2,...,m
(1)

whereYPRny, YiPR, (i 51,2,...,ny), are components of the vec
tor processY, hi0 :Rny3Rny→R, hi j :Rny3Rny→R, andWj (t)
are random excitations.hi0(Y,Ẏ) andhi j (Y,Ẏ) are of the polyno-
mial type. SettingYi5X2i 21 , Ẏi5X2i , d2i 215X2i , d2i52hi0 ,
g2i 21,j50, g2i , j5hi j , ~i 51,2,...,ny ; j 51,2,...,m!, and 2ny5nx ,
Eq. ~1! can be expressed as follows:

d

dt
Xi5di~X!1gi j ~X!Wj~ t ! i 51,2,...,nx ; j 51,2,...,m (2)

in Stratonovich form, whereXPRnx, Xi , (i 51,2,...,nx), are com-
ponents of the vector processX, di :Rnx→R, andgi j :Rnx→R.
Functionsdi andgi j are generally nonlinear, and their function
forms are assumed to be deterministic. When the excitat
Wj (t) are Gaussian white noises with zero mean and cross co
lation

E@Wj~ t !Wk~ t1t!#5Sjkd~t! (3)

whered~t! is the Dirac function andSjk are constants, represen
ing the cross-spectral density ofWj andWk , Eq. ~2! may also be
expressed in Ito’s form as

d

dt
Xi5 f i~X!1gi j ~X!Wj~ t ! i 51,2,...,nx ; j 51,2,...,m (4)

where

f i~X!5di~X!1
1

2

]gi j ~X!

]Xk
gk j~X!. (5)

The system responseX is a Markov vector and the probabilit
density of the stationary Markov vector is governed by the f
lowing reduced FPK equation~@14#!:

]

]xj
~ f j p!2

1

2

]2

]xi]xj
~Gi j p!50 (6)

wherex is the state vector andxPRnx, p5p(x) and

Gi j ~x!5Slsgil ~x!gjs~x!. (7)

In the following discussion it is assumed that the probabi
density functionp(x) of the stationary responses of random sy
tem ~4! satisfies
356 Õ Vol. 67, JUNE 2000
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H p~x!>0 xPRnx

limxi→`p~x!50 i 51,2,...,nx

E
Rnx

p~x!dx51
. (8)

If an approximate probability density function denoted asp̃(x;a)
is used, whereaPRNp andai , (i 51,2,...,Np) are parameters to be
determined andNp is the total number of the parameters, it
obvious that conditions~8! should also be fulfilled by the approxi
mate probability density function. Another requirement for t
approximate probability density function is that it must include
many parameters as possible so that the higher level of app
mation can be reached.

It can be summarized that the following four problems exist
present and need to be solved for the probability density func
solution of the nonlinear random vibrations of multi-degree-
freedom systems:

• Formulate a versatile probability density function model
that condition~8! can be fulfilled.

• An arbitrary number of unknown parameters can be includ
in the probability density function model and the precision
approximate probability density function solution can be im
proved as the total number of the parameters increases.

• Formulate a consistent solution procedure with the proba
ity density function model so that practical problems can
solved consistently.

• The probability density function model and solution tec
nique is valid for multi-degree-of-freedom or multi-dimension
systems.

A possible strategy attempting to solve the above four proble
will be presented in the next section.

3 Technique for Approximate Probability Density
Function Solution of Multi-Degree-of-Freedom Systems

In this section, a probability density function model is form
lated and then, based on the probability density function mode
solution technique is presented for the approximate solution to
~6!.

The probability density functionp̃(x;a) for the approximate
solution to Eq.~6! is assumed to be of the form

p̃~x;a!5H c expQn~x;a! x3aPDx
nx3RNp

0 x¹Dx
nx

(9)

whereaT5@a1 ,a2 ,...,aNp
#PRNp, beingai the parameters to be

determined;Np is the total number of the parameters andDx
nx

5@m12a1s1 ,m11b1s1#3@m22a2s2 ,m21b2s2#3...3@mi

2a is i ,mi1b is i #3...3@mnx
2anx

snx
,mnx

1bnx
snx

#,Rnx in
which mi ands i denote the mean value and standard deviation
Xi , respectively.a i.0 and b i.0 are defined such thatmi
2a is i and mi1b is are located in the tails of the probabilit
density function ofXi and the derivatives of the probability den
sity function of Xi with respect toxi at mi2a is i and mi1b is
equal zero;c is the normalization constant andQn(x;a) is an
n-degree polynomial in the state variablesx1 ,x2 ,...,xnx

. In this
paper, the following expression forQn(x;a) is utilized in the pre-
sented examples:

Qn~x;a!5(
i 51

nx

aixi1anx11x1
21anx12x1x2

1...1anx~nx13!/2xnx

2 1...1aNp
xnx

n . (10)

In addition to the polynomial~10!, any other polynomial may also
be used, for example, the polynomial obtained from the maxim
entropy method.
Transactions of the ASME
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Eq. ~6! can also be written in the following form:

] f j

]xj
p1 f j

]p

]xj
2

1

2 S ]2Gi j

]xi]xj
p1

]Gi j

]xj

]p

]xi
1

]Gi j

]xi

]p

]xj
1Gi j

]2p

]xi]xj
D

50. (11)

Generally, the reduced FPK Eq.~11! cannot be satisfied exactl
with p̃(x;a) becausep̃(x;a) is only an approximation ofp(x) and
the total numberNp of the unknown parameters is always limite
in practice. Substitutingp̃(x;a) for p(x) in Eq. ~11! yields the
following residual error:

D~x;a!5
] f j

]xj
p̃1 f j

] p̃

]xj
2

1

2 S ]2Gi j

]xi]xj
p̃1

]Gi j

]xj

] p̃

]xi

1
]Gi j

]xi

] p̃

]xj
1Gi j

]2p̃

]xi]xj
D . (12)

Substituting Eq.~9! into Eq. ~12! leads to

D~x;a!5d~x;a!p̃~x;a! (13)

where

d~x;a!5 f j

]Qn

]xj
2

1

2 S ]Gi j

]xj

]Qn

]xi
1

]Gi j

]xi

]Qn

]xj

1Gi j

]2Qn

]xi]xj
1Gi j

]Qn

]xi

]Qn

]xj
D1

] f j

]xj
2

1

2

]2Gi j

]xi]xj
.

(14)

Becausep̃(x;a)Þ0, the only possibility forp̃(x;a) to satisfy Eq.
~11! is d(x;a)50. However, usuallyd(x;a)Þ0 becausep̃(x;a) is
only an approximation ofp(x). In this case, another set of mutu
ally independent functionsHk(x) which span the spaceRNp can
be introduced to make the projection ofd(x;a) on RNp vanish,
which yields

E
Rnx

d~x;a!Hk~x!dx50, k51,2,...,Np (15)

or

E
Rnx

H f j

]Qn

]xj
2

1

2 S ]Gi j

]xj

]Qn

]xi
1

]Gi j

]xi

]Qn

]xj
1Gi j

]2Qn

]xi]xj

1Gi j

]Qn

]xi

]Qn

]xj
D1

] f j

]xj
2

1

2

]2Gi j

]xi]xj
J Hk~x!dx50,

k51,2,...,NP . (16)

Equation~16! means that the reduced FPK equation is satis
with p̃(x;a) in the average sense of integration ifd(x;a)Hk(x) is
integrable inRnx.

The functionHk(x) can be selected asx1
k1x2

k2...xn
knf N(x), being

k1 ,k2 ,...,kn50,1,2,...,Np and k5k11k21...1kn such that
d(x;a)Hk(x) is integrable inRnx. In order to guarantee tha
d(x;a)Hk(x) is integrable inRnx, the function f N(x) must be
properly selected. Numerical experience shows that a conven
and effective choice for functionf N(x) is the Gaussian probability
density function, for instance the probability density function o
tained with the Gaussian closure or an equivalent lineariza
procedure. Because of the particular choice off N(x), there is no
difficulty in formulating the algebraic equations in terms of t
unknown parameters if the integration in Eq.~16! can be easily
evaluated by taking into account the relationships between hig
and lower order moments of Gaussian stochastic processes
cause of this simplification, this solution technique is tractable
many engineering problems for which the integration of Eq.~16!
can be carried out analytically. From this solution technique i
seen that the normalization factorc drops out and therefore ther
is no need for a nonlinear constrain to be considered that fo
Journal of Applied Mechanics
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the area under a probability distribution function to equal 1. B
caused(x;a) is a quadratic function ofQn(x;a), the obtained
algebraic equations from Eq.~16! are quadratic algebraic equa
tions of a. Numerical experience showed that the solution of t
algebraic equation converges very fast by utilizing some pop
methods, e.g., the Newton’s method.

It is also seen from the above discussion that the unkno
function p̃(x;a), with the presented method, is not approximat
as a linear function ofa. hence the procedure is essentially diffe
ent from the Galerkin procedure.

4 Examples

Example 1. The following two-degree-of-freedom system
analyzed with the presented method:

Ÿ11
1
2 a1~S11Ẏ112a2S12Ẏ2!12a3Y114a4Y1

316a5Y1
51W1~ t !

(17)

Ÿ21
1
2 a1@2~12a2!S12Ẏ11S22Ẏ2#12a6Y2

14a7Y2
316a8Y2

51W2~ t ! (18)

where a1 ,a2 ,...,a8 are some constants,E@Wi(t1t)Wj (t)#
5Si j d(t), (i , j 51,2). SettingY15X1 , Ẏ15X2 , Y25X3 and Ẏ2
5X4 , the system can be expressed as

Ẋ15X2 (19)

Ẋ252
1
2 a1~S11X212a2S12X4!22a3X1

24a4X1
326a5X1

51W1~ t ! (20)

Ẋ35X4 (21)

Fig. 1 The probability density functions of X1 , for Example 1

Fig. 2 The probability density functions of X3 , for Example 1
JUNE 2000, Vol. 67 Õ 357
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Ẋ452
1
2 a1@2~12a2!S12X21S22X4#22a6X3

24a7X3
326a8X3

51W2~ t !. (22)

For this system, the exact PDF solution is obtainable to
~@15#!

p~x1 ,x2 ,x3 ,x4!5C exp$2a1@
1
2 ~x2

21x4
2!1a3x1

21a4x1
4

1a5x1
61a6x3

21a7x3
41a8x3

6#% (23)

whereC is the normalization constant.
For S115S2252, a15a35a451, a55a750.5, a651.5, and

a850.2, as well as arbitrary values ofS12 and a2 , the approxi-
mate probability density functions ofX1 andX3 obtained with the
presented method are compared with the exact probability den
function solutions in Figs. 1 and 2. It is apparent that the appro
mate solutions forn54 are very close to exact solutions thoug
the system is highly nonlinear in this case. Forn52, the results
coincide with those from the linearization or Gaussian clos
procedure. The probability density function solutions forn54 are
much improved compared to those from the equivalent linear
tion procedure. In order to show the tail behavior of the proba
ity density functions, the logarithmic probability density functio
are plotted in Figs. 3 and 4. It is seen that the approximate p
ability density functions forn54 are much closer to the exac
probability density function solutions, even in the tails. Numeri
analysis showed that even an exact probability density func
solution can be obtained forn56.

Example 2. Consider the following nonlinear two-degree-o
freedom system with both external and parametric excitations

Fig. 3 The logarithmic probability density functions of X1 , for
Example 1

Fig. 4 The logarithmic probability density functions of X3 , for
Example 1
358 Õ Vol. 67, JUNE 2000
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Ÿ110.2Ẏ11Y1@11W1~ t !#1Y1
32Y250 (24)

Ÿ210.5Ẏ21Y210.5Y2
35W2~ t ! (25)

whereE@Wi(t1t)Wj (t)#5Si j d(t), (i , j 51,2), S1150.2, S2251
andS1250. SettingY15X1 , Ẏ15X2 , Y25X3 , andẎ25X4 , the
above system can also be expressed as

Ẋ15X2 (26)

Ẋ252X1@11W1~ t !#2X1
320.2X21X3 (27)

Fig. 5 The probability density functions of X1 , for Example 2

Fig. 6 The probability density functions of X2 , for Example 2

Fig. 7 The logarithmic probability density functions of X1 , for
Example 2
Transactions of the ASME



i
n
o

a

s

t

n

t

tion.
n
o
r

sity
ity
e

pre-
ys-
ex-
ulted
the
ow-
r

h a
tri-

urse
ittee
.

E

g,’’

r-

r

her

s-

n-

,’’

s-

m

r-

of

.

Ẋ35X4 (28)

Ẋ45W2~ t !2X320.5X3
320.5X4 . (29)

There is no obtainable exact probability density function solut
for this system. In order to show the effectiveness of the prese
method for such systems, the Monte Carlo simulation is c
ducted to obtain the simulated probability density function so
tions which are compared with the probability density functio
for n54 and 2, ofX1 andX2 in Figs. 5 and 6. From these figure
it is seen that the probability density functions forn54 are much
improved in comparison with those forn52. The tail behaviors of
the probability density functions are also compared in Figs. 7
8. Again excellent agreement is found between the results fon
54 and simulated results. It is seen that the probability den
functions are also improved even in the tails asn increases from 2
to 4. The tails are truncated at the points where the simula
probability density functions become fluctuated due to the limi
sample size though the selected sample size is as big as 107.

The above results validate the method for the nonlinear rand
vibrations of multi-degree-of-freedom systems with both exter
and parametric excitations.

5 Conclusions
The probability density function solution of nonlinear stocha

tic multi-degree-of-freedom systems can be reasonably appr
mated withc expQn(x;a) in the domain defined in the above discu
sion, whereQn(x;a) is ann-degree polynomial inx1 ,x2 ,...,xnx

.
Such an approximate probability density function fulfills the ne
essary requirements for the probability density function of
stationary random variables. Special measure is taken such

Fig. 8 The logarithmic probability density functions of X2 , for
Example 2
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the FPK equation is satisfied in the average sense of integra
The results obtained forn54 are much improved in compariso
with those obtained forn52. From numerical results, it is als
known that the results obtained with the presented method fon
.2 are much closer to the exact or simulated probability den
function solutions, even in the tails of the probability dens
functions, which is important for reliability analysis and som
other statistical analysis. Numerical results also show that the
sented method is even valid for the multi-degree-of-freedom s
tems with high nonlinearity and both external and parametric
citations. Because only quadratic algebraic equations are res
with the method, which can be solved easily to determine
unknown parameters, this method provides a consistent and p
erful tool for the probability density function solution of nonlinea
random vibrations of the multi-degree-of-freedom systems wit
polynomial type of non-linearity and both external and parame
cal excitations.
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Dynamic Stability of Poroelastic
Columns
The dynamic stability of a poroelastic column subjected to a longitudinal periodic forc
investigated. The column material is assumed to be transversely isotropic with resp
the column axis, and the pore fluid flow is possible in the axial direction only. The mo
of the column is governed by two coupled equations, for which the stability bound
are determined analytically by using the multiple-scales method. It is shown that d
the fluid diffusion the stability regions are expanded, relative to the elastic (drained) c
The critical (minimum) loading amplitude, for which instability occurs, is also given.
@S0021-8936~00!00902-8#
u
d

o

a

u

t
u

w

e
-

e

t
e

o

of
me

ply
ub-
he
that

the

y
e
t is

hen
n
s

si-
in

r-

e.

tion

y

n

f
t
b

Introduction

The dynamic stability of elastic structures was investigated
Bolotin @1#, where the behavior is governed by the Mathieu eq
tion and the stability characterizations are given by the Strutt
gram ~see also Timoshenko and Gere@2#!. Extensive bibliogra-
phies for further results for this problem were given by Eva
Iwanovsky in a review paper~@3#! and in a monograph~@4#!.
Linear and nonlinear viscoelastic structures subjected to peri
forces have been investigated, e.g., in Stevens@5# and Touati and
Cederbaum@6#. It was shown that due to the structural dampin
resulting from the viscoelasticity of the material, the regions
stability are expanded with respect to the elastic case. In this p
we investigate the dynamic stability of a column with anoth
time-dependent characterization, the case of a poroelastic col

Poroelasticity is a continuum theory for porous media cons
ing of an elastic matrix containing interconnected fluid-fille
pores. In physical terms, the theory postulates that when a po
material is subjected to stress, the resulting matrix deforma
leads to volumetric changes in the pores. If the pores are fl
filled, this results in a flow of the pore fluid between regions
higher and lower pore volume change. The phenomenolog
model for the behavior of fluid-saturated poroelastic materials
developed by Biot@7#. His motivation, and the main application o
the theory over the years, was concerned with dynamic probl
~wave propagation! in geological~massive! structures. Sub-three
dimensional structures, such as beams, plates, or shells, hav
ceived much less attention and were mainly motivated by pr
lems in biomechanics~@8–11#!. When such elements are subject
to bending the stress gradients in the transverse direction are
ally much greater than those in the axial or in-plane ones, so
if the bulk material is isotropic the diffusion~the fluid flow in the
pores! in the transverse direction is dominant, and the diffusion
the axial or in-plane directions is considered to be negligible.
the other hand, there are structural elements, such as plant s
for which by virtue of the microgeometry the fluid flow in th
axial direction is dominant. This case was investigated recently
Li et al. @12–14# for the quasi-static behavior, vibration, an
buckling of beams, where the fluid-saturated material was take
be transversely isotropic in the cross-sectional plane. We used
Biot’s constitutive relations~@7#! and the Darcy’s law in the for-
mulation of the beams, modeled within classical beam the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
1, 1998; final revision, July 30, 1999. Associate Technical Editor: J. T. Jenk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Very interesting behavior patterns were exhibited for this kind
poroelastic element, which could easily be fabricated. The sa
type of material is considered in the following.

Problem Formulation
Consider the problem of the transverse vibration of a sim

supported poroelastic column with a uniform cross section, s
jected to a periodic longitudinal loading, as shown in Fig. 1. T
cross-sectional dimensions are small compared to length, so
the classical beam theory is adopted. In Li et al.@12# it was shown
that only four bulk material properties are necessary to define
behavior of the poroelastic material–E, h, l, andK. The physical
interpretation of these parameters is as follows:E is the axial
Young’s modulus of the solid skeleton~drained!, namely, when
the pore fluid pressurepf50. h is a nondimensional constant b
which the axial strain must be multiplied in order to find th
relative change in pore volume of the drained material when i
stressed in the axial direction. Now, letb denote the ratio of pore
fluid increment to pore pressure when there is no axial strain, t
l5h/Eb. Finally, K is related to axial permeability and is give
by K5klE/mh, wherek is the axial permeability of the porou
skeleton~depends only on the pore geometry!, andm is the vis-
cosity of the pore fluid.

The constitutive law and the actual Darcy’s law for the qua
static buckling problem result in the following beam equations
the form of global variables Li et al.@14#:

EI
]2y~x,t !

]x2 2hM p1M50, (1)

K
]2M p~x,t !

]x2 2
]M p~x,t !

]t
2lEI

]3y~x,t !

]2x]t
50, (2)

respectively, whereM is the bending moment which can be dete
mined from the equilibrium of the column, andM p is the pore
pressure moment resultant defined by

M p52E
A
pfzdA (3)

wherez is distance from the neutral axis. Equations~1! and~2! are
coupled throughl andh; if l5h50 ~if either is zero the other
must also be zero! then Eq.~1! reduces to the purely elastic cas
For a simply supported columnM5Py , whereP is the end load.

In our case the load is time-dependent, given by

P~ t !5P0 cosut. (4)

Thus, in order to arrive at the equation for the transverse vibra
of the column it is necessary to differentiate Eq.~1! twice with
respect tox and to add the inertia force acting on the column. B
doing so one obtains

e
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li-
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EI
]4y~x,t !

]x4 2h
]2M p

]x2 1P0 cosut
]2y~x,t !

]x2 1r
]2y~x,t !

]t2 50

(5)

wherer is the mass per unit length of the column.
Using the separation of variables method, and in order to sa

the boundary conditions of a simply supported column, the so
tion functions are given by the following Fourier sine series:

y~x,t !5(
j 51

`

f j sin
j px

l
(6a)

M p~x,t !5(
j 51

`

mj sin
j px

l
(6b)

where l is the length of the column. In the following, the ma
stability region is investigated. To this end only thej 51 term in
Eqs.~6! is considered. Leta5p/ l , and substituting Eqs.~6! into
Eqs. ~5! and ~2!, the equations govern the motion of the colum
are now in the form

EIa4f 1ha2m2P0a2 cosut f 1r f̈ 50 (7a)

2Ka2m2ṁ1lEIa2 ḟ 50. (7b)

Here the dot denotes differentiation with respect to time. By so
ing ~7a! for m and putting this expression together with its tim
derivative into~7b!, a single differential equation involvingf only
is obtained:

r

a2 f̂ 1@~11lh!EIa22P0 cosut# ḟ 1P1u sinut f

52K@r f̈ 1~EIa42P0a2 cosut ! f #. (8)

Let

v25
EI

r
a4, V25~11lh!v2, PE5~11lh!EIa2,

g5
P0

2PE
, d5Ka2 (9)

by which the equation of motion is in the form

f̂ 1V2@~122g cosut ! ḟ 12ug sinut f #

52d@ f̈ 1v2~122g~11lh!cosut ! f # (10)

whereg andd are small andPE is the static buckling load of the
fluid-saturated column. However, since the left side of Eq.~10! is

Fig. 1 Column configuration
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the time-derivative of the Mathieu equation, it is possible to p
ceed by investigating the stability of the following equation i
stead:

f̈ 1V2~122g cosut ! f

52dS ḟ 1v2E f ~ t !dt2v22g~11lh!E cosut f ~ t !dtD .

(11)

Stability Boundaries of the Equation of Motion
In this section the stability properties of the solution of Eq.~11!

are investigated. To this end the multiple scale method is e
ployed in order to obtain asymptotic solutions~@15#!. This method
is based on the fact that physical processes that determine
behavior of the structure take place on distinct time scales. In
system investigated here, three different time scales contro
development. The first time scale serves as a reference to
others and hence is considered throughout this work to be of o
1. The second time scale, associated with the loading ampli
P1 , is given by 1/g, and is assumed to be much bigger than 1. T
third time scale is associated with the diffusion characteristics
is given by 1/d. As was shown in Li et al.@13# the diffusion time
of a beam of lengthl is equal tol 2/K, and is considered in the
following to be much longer than the period time of the drain
beam.

We turn now to finding the instability boundaries in the~V, u,
g, d! space in the limit ofg andd being small. It is first noted tha
when

V5
u

2
(12)

a regular perturbation expansion ing and d results in solutions
that contain terms that are unbounded in time. These ter
known as secular terms, are unphysical. In order to eliminate th
secular terms, the multiple scales analysis is employed by in
ducing two new independent variablest5gt and z5dt. Within
the multiscale analysist, t, andz are considered as three indepe
dent variables. As a result,f is expanded in the following form:

f ~ t,t,z!5 f 0~ t,t,z!1gg~ t,t,z!1dh~ t,t,z!1O~g2,d2,gd!
(13)

and the second time derivative off as

d2f

dt2
5

]2f 0

]t2 1gS 2
]2f 0

]t]t
1

]2g

]t2 D1dS 2
]2f 0

]t]z
1

]2h

]t2 D
1O~g2,d2,gd!. (14)

Further, since the regions of interest are nearV5u/2, V is ex-
panded as

V25
u2

4
1gV1

21O~g2! (15)

where, to the first order ofg, V1 measures how close half th
loading frequencyu/2 is to the natural frequencyV. Equations
~13!, ~14!, and~15! are inserted into Eq.~11! and coefficients of
equal powers ofg and d are collected. The lowest order term
yields the following equation forf 0

]2f 0

]t2 1
u2

4
f 050 (16)

and its solution is given by

f 0~ t,t,z!5A~t,z!ei ~u/2!t1C.C. (17)

where C.C. stands for complex conjugate.
Terms of first order ing and d yield the following equations,

respectively:
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]2g

]t2 1
u2

4
g5F2 iu

]A

]t
2V1

2A1
u2

4
A* Gei ~u/2!t1NST1C.C.

(18)

]2h

]t2 1
u2

4
h5F22i

u

2

]A

]z
2

u2

4~11lh!

2

iu
A2 i

u

2
AGei ~u/2!t

1NST1C.C. (19)

The terms on the right-hand side of Eqs.~18! and ~19! that mul-
tiply exp(iu/2) are the secular ones since they give rise to
bounded solutions. The rest are nonsecular terms~NST!. In order
to eliminate the secular terms, it is required that the coefficie
multiplying exp(iut/2) vanish. Let

A~t,z!5T~t!Z~z! (20)

and by introducing it into Eqs.~18! and ~19! yields

u
]T

]t
2 iV1

2T1 i
u2

4
T* 50 (21)

]Z

]z
1

1

2

lh

11lh
Z50. (22)

These have solutions

T~t!5T1e~1/u!Au4/162V1
4t1T2e2~1/u!Au4/162V1

4t (23)

and

Z~z!5Z0e2~1/2!~lh/~11lh!!z (24)

respectively, whereT1 , T2 , andZ0 are constants. Inserting Eq
~23! and ~24! into Eq. ~17! yields the following form of the
zeroth-order solution:

f 0~ t,t,z!5F0e2~1/2!~lh/~11lh!!ze61/uAu4/162V1
4tei ~u/2!t (25)

whereF0 is a constant, obtained fromT1 , T2 , andZ0 . Then, by
rewriting t andz in terms oft, we see that instability occurs whe

g

u
Au2

16
2V1

4>
d

2

lh

11lh
. (26)

Fig. 2 Stability boundaries in a qualitative form
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Hence, using Eq.~15!, it is concluded that for smallg andd the
stability boundaries are given by

V25
u2

4 F16Ag22
4

u2 S lh

11lh D 2

d2G . (27)

The critical~minimum! value of the loading parameter, for whic
instability occurs, is

gcr5
2

u

lh

11lh
a2K. (28)

A qualitative Strutt diagram of the above results is given in Fig.
It is noted that in the elastic~drained! casel5h50, and thusgcr
is equal to zero, as is expected since Eqs.~2! and ~5! are not
coupled, and thus the column vibrates without a damping mec
nism.

It is noted that while the expansion in Eq.~13! involves two
independent small parametersg and d, the detuning in Eq.~15!
only takes into account the effect ofg ~and not ofd by dV2

2!. If
this additional detuning term is considered it will add to Eq.~19!
a term of the form2V2

2A inside the brackets. This leads to a
extra term in Eq.~22! in the form2 iV2

2Z/u, which, in turn, adds

an extra factor to Eq.~24! of the form e6 iV2
2z/u. Thus such a

detuning term does not influence stability, at least to the trun
tion order being investigated.
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A Normal Force-Displacement
Model for Contacting Spheres
Accounting for Plastic
Deformation: Force-Driven
Formulation
In this paper, we present a simple and accurate model for the normal force-displace
(NFD) relation for contacting spherical particles, accounting for the effects of pla
deformation. This NFD model, based on the formalism of the continuum theory of
toplasticity, is to be used in granular flow simulations involving thousands of partic
the efficiency of the model is thus a crucial property. The accuracy of the model allow
an accurate prediction of the contact force level in the plastic regime. In addition to b
more accurate than previously proposed NFD models, the proposed NFD model
leads to more accurate coefficient of restitution that is a function of the approac
velocity of two particles in collision. The novelty of the present NFD model is the add
decomposition of the contact-area radius, and the correction of the curvature o
particles at the contact point due to plastic flow. The accuracy of the proposed mod
validated against nonlinear finite element results involving plastic flow in both load
and unloading conditions.@S0021-8936~00!03102-0#
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1 Introduction
Many industrial and agricultural processes involve particle s

tems. To improve the efficiency of such processes and to de
the next generation of particle handling and transportation eq
ment, the motion behavior of particle systems must be well
derstood. There have been two methods applied to gain this
derstanding: experiment and computer simulation. The disc
element method~DEM! is an incremental method in which th
equations of motion of the particles are numerically integrated
time to obtain updated positions and velocities~see Cundall and
Strack @1# and Vu-Quoc, Zhang, and Walton@2#!. The particle-
particle interaction greatly affects the behavior of the particle s
tem and thus plays an important role in DEM simulations. In
particle system ofdry granular materials, the particle-particle in
teraction is the direct particle-particle contact, which domina
the motion behavior of such a system. Therefore, it is importan
use a model that can accurately describe the contact fo
displacement~FD! relationship in DEM to obtain reliable simula
tion results. Since DEM is computationally intensive—especia
when the number of particles is large—the DEM FD model m
be simple to reduce the complexity of the computation. The m
important features of a successful FD model for DEM simulatio
areaccuracyandsimplicity.

Most of the existing FD models for DEM simulations are bas
on theories of contact mechanics. For example, the Hertz th
~see Hertz@3# and Johnson@4#! provides solutions for elastic con
tact between spheres subjected load; and the Mindlin and
esiewicz@5# theory provides solutions for elastic-frictional conta

1To whom correspondence should be addressed.
2Now with Siemens Corporation, Princeton, New Jersey.
3Now with Parametric Technology Corporation, Boston, MA.
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Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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between spheres subjected to a frictional contact force in the
gential direction. Shih et al.@6#, provided experimental and finite
element~FE! verification of the stress distributions that are pr
dicted by Hertz theory.4 More recently, Vu-Quoc and Lesburg@7#
presents extensive FE validation of the theories of Hertz
Mindlin and Deresiewicz@5#. By showing the significant effect o
plastic deformation on FD relationships, Vu-Quoc and Lesb
@7# demonstrate the severity of a common deficiency among
models that are based on elastic contact mechanics theories: T
models only account for elastic deformation in the FD relatio
ship. Applying these models to simulations of dry granular flow
in which most contact involve plastic deformation, can lead
inaccurate results.

A model based on the formalism of elasto-plasticity was p
posed by Dobry et al.@8#. Even though the Dobry et al.@8# model
is named as an elasto-plastic model, it applies only to elastic
terials. Johnson@4# applied Hertz theory and the von Mises yie
criterion to determine the normal force at which the incipient yie
occurs in two spheres subjected to a normal load. This work d
not provide, however, the effect of the plastic deformation on
normal force-displacement~NFD! relationship during either load
ing or unloading. The NFD model proposed by Walton and Bra
@9# is based on finite element analysis~FEA! and accounts for
plastic deformation. The Walton and Braun@9# NFD model is
simple and easy to implement, but it produces a constant co
cient of restitution when simulating the collision of spheres. T
behavior is not in agreement with experiments, which showed
the coefficient of restitution depended on the incoming veloc
before collision~see Goldsmith@10# and Kangur and Kleis@11#!.

Thornton @12# proposed a NFD model that accounts for bo
elastic and plastic deformation and produces a coefficient of
titution for sphere collisions that varies with the incomin
velocity.5 To produce accurate and reliable simulation results,
models that account for both elastic and plastic deformation

t.
ins.
essor
on,
li-

4See also Johnson@4#.
5See also Brilliantov et al.@13# for another model. It is noted that our mode

~elasto-plasticity! differs markedly from the model proposed by Brilliantov et a
@13# ~viscoelasticity!.
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need to be developed. We present here a new NFD model
satisfies these demands. Our model is based on an additive
composition of the contact-arearadius, a correction of the local
curvature of the particles at the contact point, and a formula
inspired from the continuum theory of elastoplasticity. These c
dinal features of our model, the first of its kind in the literatu
came from careful nonlinear FEA and observations of the co
puted results.

2 Elastic Contact Between Two Spheres
The starting point of our elasto-plastic NFD model is He

theory, which we briefly review below.

2.1 Hertz Theory. Figure 1 depicts the contact betwee
two spheres subjected to normal loadP. Define the equivalent
elastic modulusE* and the equivalent contact curvature 1/R* as

E*ªS 12 ~ i !n
2

~ i !E
1

12 ~ j !n
2

~ j !E
D 21

, (2.1)

and

1

R*
ªS 1

~ i !R
1

1

~ j !R
D , (2.2)

where( i )R is the radius of spherei, ( i )n and( i )E are the Poisson’s
ratio and Young’s modulus of the material of spherei, respec-
tively. Similarly ( j )R, ( j )n, and ( j )E are those of spherej. The
contact area is a circle with radiusa. Hertz proposed that on th
contact surface, the distribution of normal pressurep is axisym-
metric and shaped as half of an ellipse. At a pointA in the contact
area, with a distance ofr from the centerO of the contact areas,
the normal pressurep(r ) can be expressed as

p~r !5pmF12S r

aD 2G1/2

, (2.3)

wherepm , the maximum normal pressure atr 50, is related to the
normal forceP and the contact-area radiusa by

pm5
3P

2pa2 . (2.4)

Further, we have the following expressions for the contact rad
a ~Johnson@4#, Eq. ~4.22!!:

a5S 3PR*

4E* D 1/3

, (2.5)

Fig. 1 Two spheres in contact, subjected to normal load P
364 Õ Vol. 67, JUNE 2000
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and for the approach of distant points on the two spheres~Johnson
@4#, Eq. ~4.23!!

~ i !a1 ~ j !a5
a2

R*
5S 9P2

16R* ~E* !2D 1/3

. (2.6)

Introducing~2.5! into ~2.4!, we obtain

pm5
3P

2pa2 5S 6P~E* !2

p3~R* !2 D 1/3

. (2.7)

Hertz theory assumes that the contact area is much smaller tha
the size of the spheres, i.e.,a! ( i )R and a! ( j )R. Therefore, the
stress distribution inside the sphere can be obtained by conside
ing concentrated forces applied to a elastic half-space. The stre
along the z-axis ~the axis that passes through centers of the
spheres and the center of the contact area, as shown in Figure!
thus can be expressed as~Johnson@4#, Eq. ~3.45ab!!

s r5su52pmH ~11n!F12
z

a
tan21S a

zD G2
1

2 S 11
z2

a2D 21J ,

(2.8)

and

sz52pmS 11
z2

a2D 21

. (2.9)

Based on the above expressions and on the von Mises yield cr
terion, the normal load for incipient yieldPY can be evaluated
~see Section 3.1!.

2.2 Finite Element Validation. We employed FEA to ana-
lyze the problem of two identicalelastic spheres in contact and
subjected to normal loading. By symmetry, this problem is
equivalent to that of one sphere in contact with a frictionless rigid
plane. In addition, by Saint-Venant’s principle, only the lower half
of the upper sphere is discretized with more than 2000 axisym
metric elements of ABAQUS. We discuss here the main results
for the construction of our elasto-plastic NFD model~see Vu-
Quoc and Lesburg@7# for more details!.

As an example, we chose to study an aluminum sphere of ra
dius R50.1 m, with Young’s modulusE57.031010 N/m2, and
Poisson’s ration50.3. We present in this paper only a subset of
our results corresponding to the following loading history: The

Fig. 2 Normal force P versus normal displacement a: com-
parison between FEA results and Hertz theory for the loading
path with PmaxÄ1500 N
Transactions of the ASME
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normal contact forceP is increased from 0 N to 1500 N with a
constant rate, then decreased back to 0 N also with a constant
rate.6

Figure 2 shows a good agreement between FEA results
relation ~2.6! of Hertz theory for the elastic NFD relationship in
both loading and unloading.

Figure 3 shows the comparison of normal stress distributions
the contact area for the normal forceP at the maximal value,
Pmax51500 N. Our FEA results again agree with relation~2.3! of
Hertz theory. The intersections of the normal stress curves w
the horizontal axis represent the radiusa of the contact area. The
dashed line shows that the contact radius in the FEA results f
into the range@1.1331023 m, 1.1731023 m#. According to~2.5!

6See Vu-Quoc and Lesburg@7# for other loading histories.

Fig. 3 Distribution of normal stress on the contact surface at
maximum normal force PmaxÄ1500 N: comparison between
FEA results and Hertz theory

Fig. 4 Contact area radius a versus normal force P: compari-
son between FEA results and Hertz theory
Journal of Applied Mechanics
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of Hertz theory, the contact radius isaHz51.1431023 m. Thus the
maximal possible difference between Hertz theory and FEA
sults for the contact radius is only 2.7 percent.7

Finally, Fig. 4 shows the variation of the contact-area rad
with the normal forceP. For both loading and unloading, the FE
results closely follow the prediction of~2.5!.

The agreement between the FEA results and Hertz theory
elastic normal contact thus validates the FE discretization
analysis procedure. We extend the analysis of this problem to
plastic regime for the development of the present NFD model
elasto-plastic contact.

3 The Elasto-Plastic NFD Model
To construct an NFD model that accounts for both elastic a

plastic deformation, we performed nonlinear FEA to observe
behavior of the sphere. We used the same FE discretization
sphere properties as those presented in Section 2.2. In add
we assumed the sphere material to be elasto-perfectly plastic,
yield stresssY51.03108 N/m2 ~see Vu-Quoc and Lesburg@7# for
more details!. In this section, we present our NFD model based
our observations of FEA results.

3.1 Incipient Yield Force. Plastic deformation occurs whe
the normal contact forceP exceeds theincipient yield force PY .
According to the von Mises criterion, yield occurs at points in t
material at which the second invariant of the stress devia
satisfies

J2ª
1

6
@~s12s2!21~s22s3!21~s32s1!2#5

~sY!2

3
,

(3.1)

wheres1 , s2 , ands3 are the principal stresses, andsY the ma-
terial yield stress under uniaxial tension. With the principl
stresses along thez-axis in Figure 1 given by~2.8! and ~2.9!, we
obtain the following expression forJ2 :

J25
1

3
~pm!2F~n,u!,

F~n,u!ªH 2~11n!@12u tan21~u!#1
3

2
~11u2!21J 2

,

(3.2)

where we have introduced a new variableuªz/a. Sincepm does
not depend onz,8 the point where yield will occur first is whereF
in ~3.2! is maximized with respect tou. Let u* be the maximizer
of F, and thus ofJ2 . The value ofu* is a function ofn, but not of
pm , and can be found by solving

]F~n,u* !

]u
50. (3.3)

For n50.3, we obtainu* 50.48086;9 the variation ofJ2 and J28
ª]J2 /]u with respect tou is shown in Fig. 5.

At incipient yield, in the expression~3.2!, we setJ25(sY)2/3
as in ~3.1!, andpm to pm,Y , to obtain

pm,Y5AY~n!sY , AY~n!ª@F~n,u* !#21/2, (3.4)

7Note that FEA results show a sharp drop in normal pressure at the center o
contact area (r 50.0). We attribute this behavior to the numerical characteristics
the finite element modeling of the axisymmetric problem using ABAQUS.

8See~2.4! and ~2.7!.
9Thus incipient yield occurs not at the contact surface, but at a point on thez-axis

about one-half the contact radius above the contact surface. We confirmed this
by FEA ~see Vu-Quoc and Lesburg@7#!.
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whereAY(n) is a function of the Poisson ration only. Forn50.3,
we obtainAY51.61; forn50.4, we obtainAY51.74. Next, using
~2.7! with pm5pm,Y andP5PY , we obtain10

PY5
p3R2~12n2!2

6E2 AY
3sY

3. (3.5)

Therefore, theincipient yield force PY for the sphere in our FEA
is evaluated using~3.5! to bePY.36.45 N.

3.2 Decomposition of the Contact-Area Radius. Let aep

be the radius of the contact area of an elasto-plastic contact u
normal contact forceP, andae the radius of the contact area o
elastic contact under the same normal forceP. It is easy to come
to the following relationship:

H aep5ae for P<PY ,

aep.ae for P.PY .
(3.6)

In other words, the effect of plastic deformation is to increase
size of contact-area radius. Figure 6 shows the FEA result of
elasto-plastic contact radiusaep versus normal contact forceP for
P loading from 0 to 1500 N. The elastic contact radiusae deter-
mined by Hertz theory~i.e., by ~2.5!! is also shown in Fig. 6.

Based on the behavior described above and shown in Fig. 6
introduce the following additive decomposition of the elast
plastic contact radiusaep:

aep5ae1ap, (3.7)

whereae is the elastic part determined by~2.5! of Hertz theory,
and ap the plastic correction part.11 The next issue is how to
model ap as a function ofP to reflect accurately the observe
NFD behavior obtained from FEA.

Figure 7 shows the plastic contact radiusap versus the normal
forceP for loadingP to 1500 N and unloading. We observe from
Fig. 7 that, during loading, the plastic radiusap increases withP
in an approximately linear fashion. During unloading, the plas
contact radiusap does not obviously decrease with the decreas
P; and there is a permanent deformation left after complete
loading. In other words, the contact radius goes to a nonzero

10Note that~3.5! is for two identical spheres in contact, or for a sphere contacti
a frictionless rigid surface. For two spheres of different materials and geometry,
obtainPY5p3(R* )2AYsY

3/@6(E* )2#. ~cf. Johnson@4#, Eq. ~6.10!!.
11This decomposition is similar to the decomposition of the elastoplastic str

eep into the sum of the elastic strainee and the plastic strainep in the theory of
elasto-plasticity.

Fig. 5 Variation of J 2 and J 28 along the z-axis for nÄ0.3
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sidual value~denoted later asares! as the normal forceP goes to
zero. Further, we note that theelasticpart ofaep is nonlinearwith
respect toP, as can be seen from~2.5!. Our FEA results of some
other loading histories also show similar behavior~see Vu-Quoc
and Lesburg@7#!. Based on these observations, the plastic cont
areaap in the proposed NFD model is approximated as

ap5H Ca^P2PY& for loading

Ca^Pmax2PY& for unloading
, (3.8)

whereCa is a constant that can be determined from the propert
of the spheres in contact. For example,Ca for the current elasto-
plastic contact problem, the FEA results indicateCa52.33
31027 N/m. The symbol̂ & denotes the MacCauley bracket de
fined by

^x&5H 0 for x<0

x for x.0
. (3.9)

ng
we

ain

Fig. 6 Contact radius aep versus normal force P for elasto-
plastic contact, with comparison to Hertz theory „elastic …

Fig. 7 Plastic contact radius ap versus normal contact force
P. Symbols „¿, s…: FEA results. Solid line: model for loading.
Dashed line: model for unloading.
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The approximation~3.8! is also consistent with the relation be
tween plastic strainep and stresss in the continuum theory of
elasto-plasticity with linear hardening.

This additive decomposition of elasto-plastic contact radius
not only the foundation of the proposed NFD model, but is a
crucial in the elasto-plastic TFD model~see Vu-Quoc, Lesburg
and Zhang@14#! since the initial tangential contact stiffness
closely related to the radius of the contact area.

3.3 Normal Pressure Distribution. Fig. 8 shows for our
current FEA the normal pressurepFE at Pmax51500 N. This figure
shows that the normal pressure on the contact surface is app
mately constant at a level of 2.33108 N/m2, or 2.3 times the
material’s yield stresssY51.03108 N/m2. FEA results for maxi-
mal force levels ofPmax5500 N andPmax51000 N show similar
results for the maximum normal pressurepFE, but different
elasto-plastic contact area radiiaep. That is, when the norma
contact force is much greater than the incipient yield force, i
P@PY , the maximum normal pressure is always roughly tw
the material yield stress. For detailed results of these other loa
histories, see Vu-Quoc and Lesburg@7#.

Figure 8 also shows the Hertz prediction~via ~2.3!! for the
distribution of normal pressurepH for the same normal force leve
Pmax51500 N. ComparingpH with pFE, we see that the maxi
mum normal pressure from Hertz theory is much larger than
from the FEA results. On the other hand, the radius of contact
from ~elastic! Hertz theory is smaller than that from FEA result
Since both normal pressures shown in Fig. 8 arise from the s
normal force levelPmax, the integrals of the normal pressure
over the respective contact areas should be the same.

Remark 3.1. The elasto-plastic NFD model proposed b
Thornton @12# assumes that the normal pressure on the con
surface is a constant near the center region of the contact
The maximum normal pressure, called thecontact yield stressby
Thornton@12# is denoted here by (sY) th . Consistent with Davies
~@15#, p. 425! and with Johnson~@4#, p. 155! we obtain (sY) th
.1.61sY , which is less than what we obtained from FE
results.12 To avoid a contentious situation, we refer to this mod
asModel T. The contact-area radius of Model T is therefore larg
than our elasto-plastic contact radiusaep. In addition, we note that
the tangential stiffness of contact is closely related to the siz

12The value of (sY) th was actually 1.587sY as given by Davies~@15#, p. 425! and
1.60sY as given by Johnson~@4#, p. 155!.

Fig. 8 Normal stress distribution on the contact surface
Journal of Applied Mechanics
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the contact area~see Vu-Quoc, Lesburg, and Zhang@14# for more
details!, an accurate TFD model cannot be developed using Mo
T. j

In the present model, we approximate the distribution of
normal pressure on the elasto-plastic contact surface by an ell
curve as shown by the dashed line in Fig. 8. This normal pres
can be expressed as

pep~r !5~pm!epF12S r

aepD 2G1/2

, (3.10)

where the maximum normal pressure (pm)ep is determined by
setting the integral ofpep of ~3.10! over the elasto-plastic contac
area equal to the normal forceP. We can see that the shape of th
normal pressure distribution of our model is similar to that
Hertz theory, but the distribution is over the elasto-plastic cont
area. Such an approximation of normal pressure is motivated
the use of Mindlin and Deresiewicz@5# formalism in constructing
the elasto-plastic tangential force-displacement~TFD! model. It is
important to keep in mind that although this elliptic approxim
tion of normal pressure is crucial for the construction of our TF
model ~presented in Vu-Quoc, Lesburg, and Zhang@14# but will
not affect the NFD relationship in the present NFD model.

3.4 Parabola Law: Normal Displacement Versus Contact-
Area Radius. Hertz theory gives a parabolic relation betwe
the normal displacement and the radius of the contact area. In
cases of one sphere contacting a rigid frictionless plane, the
rabola law~2.6! can be simplified to

aH5
~aH!2

R
, (3.11)

whereaH is the normal displacement between the sphere and
plane,aH the radius of contact area. Note thataH andaH are both
for elastic contact and are both determined via the relations
Hertz theory.

Figure 9 shows the FEA result for the relationship betwe
normal displacementa and elasto-plastic contact radiusaep, for
monotonic loading formP50 to P51500 N. TheaH versusaH
relation obtained from Hertz theory~via ~3.11!! is also shown. In
Fig. 9, thea versusaep curve from FEA results follows a roughly
parabolic relation that is similar to the curve from Hertz theo
Our analyses of other elasto-plastic contact cases reveal the
lar trends~see Vu-Quoc and Lesburg@7#!.

Fig. 9 Normal displacement a versus the radius of total con-
tact area „aep for elasto-plastic contact, aH for elastic contact …
JUNE 2000, Vol. 67 Õ 367



f

s

u

ere

r the

tic

nor-

e

ess-
he

pply
re-

oth
ee-
ntial

the
rce
D
e is

is
nly
t

e

the
o

z

by

ce-

by
Based on the FEA results, and considering that~3.11! is from
geometry~see Johnson~@4#, pp. 84–89! we assume that thea
versusaep relation is parabolic for the loading portion of the forc
history. That is, whenP is increasing, we have

2a5
~aep!2

Rp*
, (3.12)

whereRp* is the equivalent radius of the local contact curvatu
accounting for the effect of plastic deformation. The quantityRp*
is defined in a manner similar to~2.2! by

1

Rp*
ªS 1

~ i !Rp
1

1

~ j !Rp
D . (3.13)

For the contact between two identical spheres or between a sp
and a rigid plane, we haveRp* 5Rp/2. Therefore, the parabola law
can be written as

a5
~aep!2

Rp
, (3.14)

whereRp is the radius of local contact curvature accounting
plastic deformation. Using~3.15! shown shortly below this radius
can be computed based on the original radiusR and on the level of
plastic
deformation.

Figure 10 shows such a change in the local contact curvat
Therefore, we propose to compute the radiusRp of relative cur-
vature by the following:

Rp5CR~P!R, (3.15)

whereCR(P) is the coefficient for adjusting the contact radius
account for the plastic deformation. Considering that the pla
deformation tends to flatten the contact surface and that a la
normal forceP produces a larger the radius of local contact c
vature, we propose to expressCR(P) as

CR~P!5H 1.0 for P<PY

1.01Kc^P2PY& for P.PY
, (3.16)

whereKc is a constant determined by the sphere properties.
the sphere used in our FEA, we obtainedKc52.6931024 N21.
Therefore, whenP<PY , CR(P)51.0 leads toRp5R; and when
P.PY , CR(P).1.0 leads toRp.R.

For the case of normal forceP unloading after loading to a
maximum normal forcePmax, we assume that the relation be
tween normal displacement and contact area still follows the

Fig. 10 Plastic deformation increases the radius of relative
contact curvature
368 Õ Vol. 67, JUNE 2000
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rabola law. Since the plastic deformation is irreversible, th
must exist a residual normal displacementa res after the complete
unloading of normal forceP. Considering that the unloading
should be an elastic process, we propose the parabola law fo
P unloading stage to be

a2a res5
~ae!2

~CR!P5Pmax
R

. (3.17)

Let amax and (ae)max be the normal displacement and the elas
contact radius corresponding to the maximum normal forcePmax,
respectively. Substitutingamax, (ae)max, andPmax into ~3.17!, we
obtain

a res5amax2
~ae!max

2

~CR!P5Pmax
R

. (3.18)

The residual normal displacement depends on the maximum
mal forcePmax.

Remark 3.2. Apart from the additive decomposition of th
contact-area radius, the use of~3.15! to correct the local curvature
at the contact point is another crucial component for our succ
ful FD models. This correction also plays an important role in t
TFD model in accounting for the effect of plastic deformation~see
Vu-Quoc, Lesburg, and Zhang@14#! j

Please note that the present NFD model is developed to a
to elasto-plastic contact in combination with the TFD model p
sented in Vu-Quoc, Lesburg, and Zhang@14#. We performed
three-dimensional FEA for elasto-plastic contact subjected to b
the normal and tangential forces simultaneously. The thr
dimensional FEA results show that the presence of a tange
force does not significantly affect either theP versusa relation-
ship or the plastic flow inside the sphere. In another words,
plastic deformation is mainly caused by the normal contact fo
P ~see Vu-Quoc and Lesburg@7#!. Consequently, the present NF
model does not need to be adjusted when a tangential forc
present.

Remark 3.3. The Thornton@12# NFD model also proposed a
coefficient to modify the radius of contact curvature when there
a plastic deformation. Such a coefficient, however, is applied o
for the unloading~P decreasing! stage. In addition, the coefficien
from Thornton@12# is almost a constant whenP is much larger
than the incipient yield forcePY . More comparisons between th
present NFD model and the Thornton@12# NFD model can be
found in Vu-Quoc and Zhang@16#.

4 Algorithm for the Normal Force-Displacement
Model

Based on the discussion in Section 3, the algorithm for
force-driven version of present NFD model is broken into tw
components: loading and unloading.

During the loading stage of the normal forceP, when P
<PY , the normal displacementa can be determined by Hert
theory. WhenP.PY , the elastic contact radiusae and the plastic
contact radiusap can be computed by~2.5! and ~3.8!, respec-
tively. Then, the normal displacementa is computed using the
parabola law by~3.14!, with the elasto-plastic contact radiusaep

by ~3.7!, and with the radius of contact curvature modified
~3.15!.

At the start of unloading~P decreasing!, the maximum normal
force Pmax, the maximum normal displacementamax, and the
maximum elastic contact radius (ae)max are all known from pre-
vious calculations. Consequently, the residual normal displa
ment can be computed by~3.18!. When Pmax<PY , the elastic
unloading follows Hertz theory. WhenPmax.PY , the normal dis-
placementa is computed using the parabola law for unloading
~3.17!, with the elastic contact radiusae from Hertz theory by
~2.5!.
Transactions of the ASME
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Algorithm 4.1 shows the detailed pseudocode for the imp
mentation of the force-driven version of the proposed elas
plastic NFD model. Please note that a boolean variablen f inc
~which is an abbreviation for ‘‘normal force increasing’’! is
used in Algorithm 4.1 for indicating the status of normal forceP:
When n f inc5true, P is increasing; whenn f inc5false, P is
decreasing.

Algorithm 4.1. Elasto-plastic NFD model: Force-driven ve
sion

1 Data: R, E, n, sY , Ca , Kc .
2 Calculate PY via ~3.5!.
3 Input : Pn21 , an21

ep , an21
e , an21

p , and Pn .
4 Goal: computean , an

ep , an
e , and an

p .
5 CalculateDPn5Pn2Pn21 .
6 aif DPn50
7 Update an5an21 , an

ep5an21
ep , an

e5an21
e ,

an
p5an21

p .
8 aelseif DPn.0 ~Loading!
9 set n f inc5true.

10 bif Pn<PY ~elastic!
11 Calculatean via ~2.6!.
12 Calculate an

e via ~2.5!.
13 an

p50 by ~3.8!.
14 an

ep5an
e by ~3.7!.

15 belseif Pn.PY ~elasto-plastic!
16 Calculate an

e via ~2.5!.
17 Calculate an

p via ~3.8!.
18 Calculate an

ep via ~3.7!.
19 Calculate Rp via ~3.16!.
20 Calculatean via ~3.14!.
21 bendif
22 aelseif DPn,0 ~Unloading!
23 cif n f inc5true
24 set Pmax5Pn21 .
25 setamax5an21 .
26 set amax

e 5an21
e .

27 set amax
p 5an21

p .
28 Calculatea res via ~3.18!.
29 set n f inc5false.
30 cendif
31 set an

p5amax
p .

32 Calculate an
e via ~2.5!.

33 Calculatean via ~3.17!.
34 Calculate an

ep via ~3.7!.
35 aendif

From Algorithm 4.1, we see that a normal displacementa can
be determined with a given normal forceP for the loading stage.
In the unloading stage, with a given normal forceP and the maxi-
mum normal forcePmax, the normal displacementa can also be
determined directly. In other words, the proposed NFD mode
‘‘total’’ rather than incremental.

In addition to the ordinary parameters for the contact such aR,
E, n, andsY , coefficientsCa andKc , which depend on the geo
metric and mechanical properties of the spheres in contact,
also needed to implement this proposed NFD model. Coefficie
Ca andKc can be either extracted from FEA results as we do
this paper or extracted using optimization from data of sim
experiments as we did in Zhang and Vu-Quoc@17#.

5 Numerical Examples
Using the proposed elasto-plastic NFD model, we applied

loading pathsABC, ADE, and AFG shown in Fig. 11 to the
problem of a sphere pressed against a frictionless rigid plane.
geometric and material properties are the same as those list
Section 3. Figures 12–15 show the NFD curves and related c
Journal of Applied Mechanics
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Fig. 11 Loading paths of normal force

Fig. 12 Normal force P versus normal displacement a by dif-
ferent models for the loading path AFG in Fig. 11

Fig. 13 Contact areas radii aep, ae, ap versus normal force P
by the proposed elasto-plastic NFD model for the loading path:
AFG in Fig. 11
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ficients of restitution generated by our elasto-plastic NFD mod
In each figure, we compare the results of our model with bo
Hertz theory and with the results from Model T~see Remark 3.1!.
Please note that all the NFD curves shown in these figures
produced in a force-driven procedure, i.e., the force history
input to produce the displacement history. The coefficient of re
titution, representing the energy dissipation during a collision,
originally defined as the ratio of outgoing velocity to the incomin
velocity when a particle collides with a static half-space. Th
different coefficients of restitution shown in this section a
equivalently obtained by taking the square root of the ratio of t
compression energy to the releasing energy during the load
process, i.e.,

e5S area under the unloading curve

area under the loading curveD
1/2

. (5.1)

Figure 12 shows variousP versusa curves for the loading path
AFG (Pmax51500 N) shown in Fig. 11. The coefficient of resti
tution from the results of the proposed elasto-plastic NFD mod
is epm50.7538, while the coefficient of restitution from FEA re
sults iseFE50.7372; the difference is only 2.2 percent. It can b

Fig. 14 Normal force P versus normal displacement a by dif-
ferent models for the loading path ADE in Fig. 11

Fig. 15 Normal force P versus normal displacement a by dif-
ferent models for the loading path ABC in Fig. 11
370 Õ Vol. 67, JUNE 2000
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seen that theP versusa curve produced by the proposed elast
plastic NFD model agrees with theP versusa curve produced by
FEA. The P versusa curve produced by Model T is, howeve
much too soft. That is, one obtains a much larger displacemen
the same force level, compared to FEA results. At the maxim
normal forcePmax51500 N, the normal displacement predicte
by Model T, (amax)th.3.0031025 m, is about twice as the corre
sponding FEA result, (amax)FE.1.5631025 m. The maximum
displacement from the proposed elasto-plastic NFD mode
about the same as the corresponding FEA result. The corresp
ing coefficient of restitution from Model T iseth50.4772, which
is 35.3 percent lower than that predicted by FEA. This differen
in the coefficient of restitution is because Model T predicts
energy dissipation~i.e., the area enclosed by the loading and u
loading curves and thea axis! that is much larger than that pre
dicted by FEA.

Figure 13 shows the contact area radiiaep, ae, andap, versus
the normal forceP as produced by the proposed elasto-plas
NFD model for loading pathAFG (Pmax51500 N). In our elasto-
plastic NFD model, theae versusP curve is based on the Hert
theory expression~2.5!. Theap versusP curve follows~3.8!, and
agrees with FEA results shown in Fig. 7. The total contact a
radiusaep shown in Fig. 13 is simply the sum ofae and ap, as
implied in ~3.7!, and agrees with the FEA results shown in Fig.

Figure 14 shows theP versusa curves for the loading path
ADE (Pmax51000 N). The results from the proposed NFD mod
agree closely with FEA results. The corresponding coefficien
restitution from the proposed elasto-plastic NFD model isepm
50.7757, while the coefficient of restitution from FEA results
eFE50.7965; the difference between them is small~2.6 percent!.
As in the previous case, the results from Model T display a c
tact behavior that is too soft, with much larger maximum displa
ment and much larger energy dissipation. Quantitatively,
maximal displacement (amax)Th obtained from Model T is
(amax)Th.2.0031025 m; from FEA, we obtain
(amax)FE.1.1431025 m; and from the proposed elasto-plast
NFD model, (amax)pm.1.1731025 m. The coefficient of restitu-
tion from Model T is eTh50.5273, which differs fromeFE and
epm by about 33.8 percent.

Figure 15 shows theP versusa curve for the loading path
ABC (Pmax5500 N) Again, it can be seen that results from t
proposed elasto-plastic NFD model agree closely with FEA
sults. The corresponding coefficient of restitution from the p
posed elasto-plastic NFD model isepm50.8578, which agrees
well to the coefficient of restitution from FEA results,eFE
50.8407 with a difference of 2.0 percent. Similar to the previo
two loading histories, Model T yields results that are much t
soft, with the maximum displacement (amax)Th.1.1131025 m,
being much larger than the corresponding maximum displacem
(amax)FE.0.6831025 m from FEA results and the maximum dis
placement (amax)pm.0.7131025 m from the proposed elasto
plastic NFD model. Similarly, the energy dissipation in Model
is also much larger than that in FEA results. The coefficient
restitution from Model T iseTh50.6240, which is about 25.8
percent smaller thaneFE.

In summary, the proposed elasto-plastic NFD model produ
not only an accurateP versusa relationship, but also a correc
coefficient of restitution and energy dissipation compared w
FEA results. Model T produces much softerP versusa relation-
ship, smaller coefficient of restitution, and larger energy dissi
tion, for the same maximum normal force level.

Remark 5.1. The soft contact behavior of Model T is partiall
attributed to the fact that this model predicts that theP versusa
curve is a straight line after the plastic deformation occurs dur
loading. The NFD curves obtained from applying th
displacement-driven versions of the proposed NFD model a
Model T to the same displacement paths show similar results,
the normal force level produced by Model T from the same n
Transactions of the ASME
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mal displacement is much smaller than that by the proposed N
model as presented in Vu-Quoc and Zhang@16#. The results from
the discrete element~DEM! simulation of a sphere colliding with
a rigid half-space using different models also reveal similar
sults. We refer the readers to Vu-Quoc and Zhang@16# for more
details. j

6 Conclusion
We have presented a model for the normal force-displacem

~NFD! relation of contacting spherical particles, accounting
the effects of both elastic and plastic deformation. This N
model, based on the formalism of the continuum theory of e
toplasticity, is to be used in granular flow simulations involvin
thousands of particles~see also Vu-Quoc et al.@2# and Vu-Quoc
and Zhang@16#!; the efficiency of the model is thus a cruci
property. The novelty of the present NFD model is the addit
decomposition of the contact-area radius, and the correction o
radii of the particles at the contact point due to plastic flow. T
presented construction and the algorithm of this model show
the implementation of this model issimpleand that the computa
tion using this model is efficient.~The displacement-driven ver
sion of this NFD model is also simple and efficient, see Vu-Qu
and Zhang@16#.! A comparison of the FD results produced by th
model with nonlinear elasto-plastic FEA results validated the
curacy of the proposed model. The same formalism for the c
struction of the proposed NFD model is also employed to c
struct a tangential force-displacement~TFD! model accounting for
the effects of both elastic deformation and plastic deformat
~presented in Vu-Quoc et al.@14#.! Therefore, the presented NFD
model and the TFD model form a set of consistent FD models
the simulation of contacting spherical particles. For additional
formation on the application of previous FD models to granul
flow simulations, the readers are referred to@18–21#.
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On Higher-Order Crack-Tip Fields
in Creeping Solids
In view of the near-tip constraint effect imposed by the geometry and loading config
tion, a creep fracture analysis based on C* only is generally not sufficient. This pape
presents a formulation of higher-order crack-tip fields in steady power-law cree
solids which can be derived from an asymptotic development of near-tip fields analo
to that of Sharma and Aravas and Yang et al. for elastoplastic bodies. The higher-
fields are controlled by a parameter named A2* , similar as in elastoplasticity, and a
second loading parameter,s` . By means of the scaling properties for power-law ma
rials, it is shown that A2* for a flat test specimen is independent of the loading lev
Finally, we carry out small-strain finite element analyses of creep in single-edge not
tension, centered crack panel under tension, and single-edge notched bending spe
in order to determine the corresponding values of A2* for mode I cracks under plane
strain conditions.@S0021-8936~00!01202-2#
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1 Introduction
There is growing appreciation of the role of higher-order ter

in the asymptotic stress and deformation fields near cracks in
linear materials. In elastic materials, Williams@1# was the first to
publish the second term in the series expansion of the asymp
field; since then this term is commonly denoted as theT-stress.
Together with the magnitude of the leading-order square-root
gular term governed by the stress intensity factorK, this yields a
two-parameter characterization of the near-tip crack fields thro
$K,T%. In the context of the experimental testing of fracture pro
erties, the significance of theT-stress, parallel to the crack i
mode I loading, lies in the dependence ofT on the geometry of the
test specimen. Later, Li and Wang@2# performed a two-term
asymptotic analysis for a mode I crack under plane-strain co
tions for power-law hardening materials. Their second-order
rameter along with theJ-integral then describe the near-tip field

At the beginning of this decade, Betego´n and Hancock@3# pro-
posed a two-parameter characterization of elastic-plastic crac
fields by using a modified boundary layer formulation based
the first two termsK and T. They concluded that geometrie
which maintainJ-dominance, are characterized by zero or posit
values ofT-stresses while geometries with negativeT stresses can
be described by a two-parameter characterization usingJ and T.
O’Dowd and Shih@4# have advanced a similar two-paramet
characterization of the crack-tip fields in elastic-plastic solids
terms of the value of theJ-integral and a constraint factorQ, i.e.,
$J,Q%. Furthermore, they takeQ as the near-tip hydrostatic stres
normalized by the yield stresss0 . Detailed comparison with finite
element calculations~@4#! has confirmed that the hydrostatic stre
field is constant to a fair degree of accuracy over a wedge-sha
zone in front of the crack tip. They also devised a procedure
relateQ to the elasticT-stress under small-scale yielding cond
tions. This two-parameter characterization has been quite suc
ful in the classification of brittle compared to ductile failure
many metals~@5,6#!.

In the same period, Sharma and Aravas@7# performed an ana-
lytical asymptotic analysis of the fields in an elastoplastic ma
rial. Their analysis has been carried out in terms of aJ2 deforma-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, No
17, 1998; final revision, Oct. 5, 1999. Associate Technical Editor: I. M. Dan
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tion theory of plasticity, assuming the following stres
(s i j ) –strain (e i j ) relationship~in Cartesian coordinates!:

e i j 5
11n

E
si j 1

122n

E

1

3
skkd i j 1

3

2
aee

si j

se
if se>s0 (1)

whereee is given by the power-law hardening expression

ee5e0~se /s0!n (2)

with se the Mises stress,se5A3/2si j si j andsi j the deviatoric part
of the stress tensor. In~1!, E is Young’s modulus,n Poisson’s
ratio, n is the hardening exponent,e05s0 /E is the elastic yield
strain, anda is a material parameter. The series expansion of
near-tip stress field is found to be of the form~@7#!

s i j ~r ,u!

s0
5S J

ae0s0I nr D
1/n11

s̃ i j
~0!~u!1QS r

J/s0
D p

s̃ i j
~1!~u!1 . . . ,

(3)

wherer andu are polar coordinates centered at the crack tip, a
where thes̃ i j

(k)(u), k50,1 are normalized nondimensional fun
tions corresponding to the scaling factorI n . The first term in~3!
corresponds to the HRR field~@8,9#! with the nondimensional
function s̃ i j

(0) being tabulated by Shih@10#. According to~3!, the
second-order term is actually not constant in (r ,u). However, the
exponentp is found to be rather small:pP~20.102, 0.053! for
realistic values ofn, nP~2, 20! ~@7#!. The dimensionless function
for k51 have been tabulated by Sharma@11#. A few years later,
Xia et al. @12# performed a similar asymptotic analysis up to t
fifth-order term, and Yang et al.@13# carried out a complete analy
sis of higher-order terms for both mode I and mode II loadin
The latter authors, as well as Nikishkov et al.@14# also applied the
three-term expansion to some important selected test specim
~e.g., single-edge notched bending~SENB!, centered crack pane
under tension~CCT!!.

What we are interested in here are the higher-order nea
fields in a steadily creeping power-law material. Riedel and R
@15# demonstrated that the leading-order terms in the expan
can be directly obtained from those for elastic-plastic materials
invoking the Hoff analogy, i.e., replacing displacements with d
placement rates and strains by strain rates in all governing e
tions. The hardening law~2! then transforms into the creep law
ėe5 ė0(se /s0)n, and the singular term in the near-tip stress fie
becomes equivalent to the leading term (k50) in ~3! when J is
replaced withC* , andae0 with ė0 . Sharma and Aravas@16# have
suggested to proceed along these lines to obtain the higher-o
terms. Thus, they replace the radial dependence of the se

v.
el.
essor
on,
li-
00 by ASME Transactions of the ASME



w

a

p

f

n

e

-

g
o

k

,
-
r

r
w
s
,
s

if
s as

art
th,

the

n

s

a-
ng
ss
di-

al.
y
of a
d.
as

ress
we
term in ~3!, r /(J/s0), with r /(C* / ė0s0) ~the additional factorė0

is needed here to nondimensionalize the time dimension inC* !.
However, here we arrive at a principal difficulty which is ass

ciated with the fact that the creep parameterss0 and ė0 are not
independent. In fact, the creep law can be written in a fu
equivalent manner as

ėe5Bse
n , (4)

with the single material parameterB replacing the combination
ė0 /s0

n . Careful consideration of the leading term in th
asymptotic expansion shows that, owing to the particular po
1/(n11), the coefficient can indeed be expressed in terms oB
~see also@15#!. However, the second and higher-order terms c
not be immediately re-grouped in terms of the combinationB
5 ė0 /s0

n . Henceforth, we have to conclude that the simple ap
cation of Hoff’s analogy to~3! cannot deliver the correct higher
order fields. The underlying reason for this is thats0 in plasticity
not only enters in~2!, wheree0 /s0

n is the only parameter@cf. ~4!#,
but also serves as a separate quantity to define the yield sur
The latter is absent in creep.

The purpose of this paper therefore is to reconsider the der
tion of the higher-order crack-tip fields in a steadily creepi
solid.

2 Dimensional Considerations
We consider a crack under tensile loading~mode I! in an elastic

power-law creeping material governed by the constitutive eq
tions

ė i j 5
11n

E
ṡi j 1

122n

E

1

3
ṡkkd i j 1

3

2
ėe

si j

se
, (5)

with ėe according to~4!. A creep zone around the crack is defin
as the region in which the creep strains are larger or equal to
elastic strains~@15#!. If the creep zone is small compared to th
crack length~or specimen size!, the crack-tip situation is con
trolled by the stress intensity factorK I . We concentrate on the
case of extensive creep, i.e., when the creep zone is not s
compared to the crack length, for which the value ofC(t) is the
relevant loading parameter~@15#!. Under constant remote loadin
conditions and if the crack is stationary, steady-state conditi
are attained after sufficiently long times andC(t) approachesC* ,
i.e.,

C* 5E
G
S ẇdx22s i j nj

]u̇i

]x1
dsD (6)

with, for power-law creep,

ẇ5E
0

ė kl
s i j dė i j 5

n

n11
seėe , (7)

where the Cartesian coordinate systemxi is centered at the crac
tip andG is an arbitrary counterclockwise path around the cra
tip parametrized bys.

When the near-tip fields have approached the steady state
ṡ i j 50, the constitutive Eqs.~5! only involve the material param
etersn andB. It then follows purely from dimensional conside
ations that the stress field must scale with (C* /Br)1/(n11) when
the loading is governed solely byC* . This agrees exactly with the
leading-order term that one obtains from~3! when J is replaced
with C* , andae0 with ė0 ~@15,16#!. Obviously, the higher-orde
terms cannot scale in the same way; but, there is no other
available with justC* , B, andn. As the constitutive model doe
not involve a separate parameter with dimensions of stress
must introduce a second loading parameter, with dimension
stress,s` . There is not a unique definition of this parameter. O
possibility is to identifys` with the net average stress over th
ligament in a test specimen, as is done by Riedel@17# when nor-
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malizing theC* -integral~see also Section 5.1!. Another possibil-
ity is to identify s` with the Mises stress that would be acting
there were no crack. This definition applies to test specimen
well as to components.

Hence, the steady-state stress field is a function ofr, u, B, n,
C* , and s` . Dimensional considerations then show that ap
from r there is only a single parameter with dimensions of leng
namely

L5C* /Bs`
n11. (8)

Moreover, one finds that the near-tip stress field must be of
form

ŝ i j 5 f i j ~ r̂ ,u,n!,

and similar forms result for the strain rateė i j and the velocityu̇i .
Here and in the sequel, the (ˆ ) denotes nondimensionalization o
the basis ofs` andL:

r̂[
r

L
, ŝ i j [

s i j

s`
, e6 i j [

ė i j

Bs`
n , u6 i[

u̇i

Bs`
n L

. (9)

With the associated normalizations

x̂i[
xi

L
, w6 5

ẇ

Bs`
n11 ,

the C* integral ~6! becomes

C* 5Bs`
n11LE

G
S w6 dx̂22ŝ i j nj

]u6 i

] x̂
dŝD .

It then follows from ~7!–~8! that the normalized near-tip field
must be scaled so that

E
G
S n

n11
ŝe

n11dx̂22ŝ i j nj

]u6 i

] x̂
dŝD51. (10)

3 Three-Term Expansion of Near-Tip Fields
With an asymptotic development analogous to Sharm

Aravas’s ~@7#! but going further than the second term as Ya
et al. @13# did in their elastoplastic analysis, the near-tip stre
field for creeping solids under plane-strain mode I loading con
tions can be written as

ŝ i j ~r ,u!5Q0@ r̂ sŝ i j
~0!~u!1Q1r̂ pŝ i j

~1!~u!

1Q2r̂ qŝ i j
~2!~u!1 . . . # as r̂→0, (11)

whereŝ i j
(k) (k50,1,2) are to be determined later. As Yang et

@13# pointed out, forn>3, the first three terms are controlled b
plastic strains and not by elastic strains. Therefore, the use
three-term expansion for steadily creeping solids is fully justifie

The nondimensional deviatoric stress field is readily obtained

ŝi j ~r ,u!5Q0@ r̂ sŝi j
~0!~u!1Q1r̂ pŝi j

~1!~u!1Q2r̂ qŝi j
~2!~u!1 . . . #

as r̂→0. (12)

Expressing the effective Mises stress in terms of deviatoric st
components and limiting the development to dominant terms,
obtain the following expansion:

ŝe5Q0@ r̂ sŝe
~0!1Q1r̂ pŝe

~1!1Q2r̂ qŝe
~2!1 . . . # as r̂→0

(13)

with

ŝe
~0!5S 3

2
ŝi j

~0!ŝi j
~0!D 1/2

, ŝe
~1!5

3

2

ŝi j
~0!ŝi j

~1!

ŝe
~0! , and

ŝe
~2!5

3

2

ŝi j
~0!ŝi j

~2!

ŝe
~0! . (14)
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The strain-rate field can be immediately obtained from the con
tutive Eq. ~5! for steady conditions by substitution of~12! and
~13!. Making use of the nondimensionalization~9!, and retaining
again only up to the third-order terms, we find

e6 i j 5Q0
n@ r̂ sne6 i j

~0!1Q1r̂ s~n21!1pe6 i j
~1!1Q2r̂ s~n21!1qe6 i j

~2!1 . . . #

as r̂→0 (15)

where

e6 i j
~0!5

3

2
ŝi j

~0!@ ŝe
~0!#n21, (16)

e6 i j
~k!5

3

2
@ŝe

~0!#n21F ŝi j
~k!1~n21!ŝi j

~0!
ŝe

~k!

ŝe
~0! G , k51,2. (17)

The expression for the displacement rate can be obtained
integration of the strain-displacement relations in a way analog
to that of Li and Wang@2# in their elastoplastic analysis. Fo
completeness, we list the result here in terms of the normal
quantities according to~9!:

u6 i5Q0
n@ r̂ sn11u6 i

~0!1Q1r̂ s~n21!1p11u6 i
~1!

1Q2r̂ s~n21!1q11u6 i
~2!1 . . . # as r̂→0 (18)

where

u6 r
~0!5~n11!e6 rr

~0! , u6 r
~1!5

e6 rr
~1!

p1
2

n11

and u6 r
~2!5

e6 rr
~1!

q1
2

n11
(19)

u6 u
~0!5

2e6 ru
~0!2u6 r ,u

~0!

2n

n11

, u6 u
~1!5

2e6 ru
~1!2u6 r ,u

~1!

p2
n21

n11

and

u6 u
~2!5

2e6 ru
~2!2u6 r ,u

~2!

q2
n21

n11

(20)

with ~ !, u denoting differentiation with respect tou.
As mentioned in Section 2, the solution must satisfy the n

malization condition~10!. Evaluation of~10! along a circular con-
tour around the crack tip forr̂→0 yields that

s5
21

n11
, Q05S 1

I n
D 1/n11

, (21)

with ~cf. @10#!

I n5E
2p

p S n

n11
@ŝe

~0!#n11 cosu2Fsinu~ŝ rr
~0!~u6 u

~0!2u6 r ,u
~0!!

2ŝ ru
~0!~u6 r

~0!1u6 u,u
~0! !!1

1

n11
cosu~ŝ rr

~0!u6 r
~0!1ŝ ru

~0!u6 u
~0!!G Ddu,

(22)

provided that the dimensionless functionsŝ i j
(0)(u) are normalized

so that maxŝe
(0)(u)51. With ~21!, the stress field can be rewritte

in dimensional form as

s i j ~r ,u!5S C*

BInL D 1/n11F S r

L D 21/n11

ŝ i j
~0!~u!1Q1S r

L D p

ŝ i j
~1!~u!

1Q2S r

L D q

ŝ i j
~2!~u!1 . . . G (23)

to elucidate that the first-order term represents the HRR cr
solution.
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The final solution for the higher-order parametersp, q, as well
as the associated functionsŝ i j

(k) , etc., (k51,2) follows from sub-
stitution of the expansion~11! into the equilibrium equation and
the appropriate boundary conditions. This analysis has been
ried out for elastoplastic solids by Yang et al.@13# in terms of an
equivalent asymptotic expansion as used here, be it that t
length scaleL is not defined by~8! but regarded as an independe
parameter. They derive that the third term in the expansion
related to the second term through

q52p2s52p1
1

n11
for n>3, (24)

and the final result can be written as~cf. Eq. ~3!!

s i j ~r ,u!

s0
5S J

as0e0I nL D 1/n11F S r

L D 21/n11

s̃ i j
~0!~u!

1A2S r

L D p

s̃ i j
~1!~u!1A2

2S r

L D q

s̃ i j
~2!~u!1 . . . G .

(25)

Tables giving the values of the stress functionss̃ i j
(k)(u) and the

higher-order exponentsp and q as a function ofn for mode I
plane-strain conditions have been summarized by Chao and Z
@18#. One can repeat the Yang et al.@18# derivation for the presen
asymptotic expansion to show that the second and third term
~23! are related in a completely similar fashion, and thatQ2

5Q1
2. In fact, the angular functionsŝ i j

(k)(u), etc. (k51,2) appear-
ing in ~11!–~20! are identical to the functionss̃ i j

(k)(u), etc., given
by Yang et al.@13# and Chao and Zhang@18#. To emphasize the
similarity with ~25!, we will from now on use the substitutions

Q1ªA2* , Q2ªA2*
2 (26)

and write the nondimensional stress field in a steady creep
solid as

ŝ i j ~r ,u!5S 1

I n
D 1/n11

@ r̂ 21/n11ŝ i j
~0!~u!1A2* r̂ pŝ i j

~1!~u!

1A2*
2r̂ qŝ i j

~2!~u!1 . . . #. (27)

The only unknown left is the second-order coefficientA2* . Its
properties for creeping test specimens will be investigated fur
in the next section.

4 Scaling Properties for Test Specimens
The higher-order terms in~27! control the deviation of the

crack tip fields from the HRR solution. The intensity of this d
viation, in terms of the value ofA2* , in a fracture test specimen
depends on the geometry of the cracked specimen and on
loading. Before addressing some typical test specimens in the
section, we show that the scaling properties of power-law cre
ing solids renderA2* independent of the loading level.

Consider a cracked specimen submitted to steady-state, i.e
tensive power-law creep conditions. Following Ilyushin@19#, the
response of the real cracked specimen can be obtained from
of a normalized cracked specimen in which we normalize
lengths by a characteristic specimen dimension,W; all stresses by
the remote applied stresss` , and all strain rates byBs`

n . The
latter two are identical to the scaling used for the near-tip fields
~9!, but the normalization of lengths is different; for that reaso
quantities normalized byW are denoted by (̄) rather than (̂ ).
The normalized governing equations~equilibrium, compatibility
and constitutive relations! thus reduce to

]ŝ i j

] x̄ j
50, e6 i j 5

1

2
S ] ū̇i

] x̄ j
1

] ū̇ j

] x̄i
D , e6 i j 5

3

2
ŝe

n21ŝi j . (28)

This means thatC* is normalized byBs`
n11W:
Transactions of the ASME
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C̄* 5
C*

Bs`
n11W

5
L

W
5L̄ (29)

where we recall thatL is the characteristic length of the near-t
creep fields~see~8!!.

Accordingly, the stress field in a specimen whose geometry
loading are symmetric with respect to the crack plane is expre
as ~cf. @17#!

s i j ~xk ,a,W,P,n,S,F!5s`ŝ i j ~ x̄k ,ā,n,S,F! (30)

wheres` is, for example, taken as the net section stressP/(W
2a), anda is the crack length. VariableS symbolizes the shape
of the specimen~but not the sizeW!, andF represents the loading
configuration~but not the magnitudeP!. In view of the governing
Eq. ~28!, the dimensionless functionŝ i j depends on the specime
shape and loading configuration, but does not depend on
specimen size nor on the loading level. Also, it depends on
material only throughn but not throughB.

The normalized asymptotic near-tip stress field in~27! should
possess the same properties. To check this, we recall that, als
scaling arguments, Riedel@17# showed that theC* -integral for a
specimen in which the stress field obeys~30! can be expressed a

C* 5WBs`
n11g~ ā,n,S,F! or C̄* 5g~ ā,n,S,F!,

where the dimensionless functiong for a given specimen and
loading configuration only depends onā and n. It then follows
from ~8! that L5Wg(ā,n,S,F), so thatr̂ 5 r̄ /g(ā,n,S,F). When
this is substituted into~27!, we immediately see that th
asymptotic field also has the functional formŝ i j ( x̄k ,ā,n,S,F) as
in ~30!, provided that the coefficientA2* depends only onā, n, S,
andF. So, the higher-order coefficient for the creep fields is
deed independent of the loading level.

In general, the equivalent parameterA2 for the elastoplastic
solid in ~25! does depend on the loading level too, because
Journal of Applied Mechanics
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near-tip fields are dependent on the size of the plastic zone. O
in the limit of a fully plastic specimen isA2 independent of the
loading level~@20#!, just like the creep coefficientA2* . In fact, the
fields in a fully plastic power-law hardening material would b
similar to those in a power-law creeping solid by virtue of t
Hoff analogy, if the length scalesL used in~25! versus~23! were
the same. Under these conditions, the second-order parameteA2

andA2* would be identical. Now, Chao et al.@20# and Chao and
Zhu @21# use the specimen widthW as the arbitrary length param
eterL in ~25! to identify the value of their second-order paramet
A2

(W) . The valueA2 of the parameter corresponding to the leng
scaleL is related toA2

(W) according to

A25A2
~W!~L/W!p11/n11. (31)

This follows immediately from~25! by equating the second-orde
terms using (L,A2) with those using (W,A2

(W)) ~with reference to
~24! it is readily checked that the same conclusion is reached
equating the respective third-order terms!. The correspondence
~31! can be used now to convert the values of the second-o
parameterA2

(W) reported by Chao and Zhu@21# for selected test
specimens, values ofa/W andn, to the appropriate value ofA2* in
the creep solution~27! for any C* normalized according to~29!
through

A2* 5A2
~W!~C̄* !p11/n11. (32)

5 Application to Test Specimens

5.1 Loading Functions. In this section, higher-order crac
tip fields presented in Section 3 are applied to three test speci
configurations: SENT~single edge notched tension specime!,
SENB ~single edge notched bending specimen!, and CCT~cen-
tered crack panel under tension! ~see Fig. 1!. As indicated in Fig.
Fig. 1 Geometries of normalized test specimens: „a… SENT, „b… SENB, and „c… CCT, including normalized loading
JUNE 2000, Vol. 67 Õ 375
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1, the calculations are performed in a fully normalized way us
the scaling presented in Section 4. For practical reasons, th
mensions of the SENT, SENB, and CCT specimens considere
this section are taken to be identical. A span of 2H54W is used
so that end effects on the near-tip behavior can be neglected

In order to obtain the HRR and higher-order fields related
SENT, SENB, and CCT specimens, we need to determine firs
value ofC̄* for these specimens. One way to computeC̄* rapidly
and efficiently is to refer to fully plastic solutions providing th
values of theJ-integral determined by Kumar et al.@22# as sug-
gested by Riedel@17#. For the SENT specimen, the fully-plast
solution for power-law hardening materials is given by@22#

J5as0e0W~12ā!āh1S P

P0
D n11

(33)

whereP0 is the limit load,

P051.4555hW~12ā!s0 with h5A11S ā

12āD 2

2
ā

12ā
,

andh1 is a dimensionless function of the loading configurationā
and n. Equation~33! can be expressed in terms of the remo
applied stresss`[P/W as

J5
ae0

s0
n W~12ā!āh1S s`

1.455h~12ā! D
n11

. (34)

From~34!, we directly obtain the corresponding creep solution
C* by application of Hoff’s analogy, and subsequent normali
tion according to~29! yields

C̄* 5~12ā!āh1S 1

1.455h~12ā! D
n11

for SENT specimens.

(35)
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The value ofh1 in ~33! can be obtained by interpolation from
the tables given by Kumar et al.@22# or by an approximate ex-
pression proposed by Riedel@17#. However, refined numerica
investigations by Shih and Needleman@23,24# have provided
more accurate solutions of this problem, which have shown~Shih
and Needleman,@23#! that, in the range 1<n<10, the calculated
values ofh1 may differ by as much as 100 percent from tho
given by Kumar et al.@22#. Therefore, the coefficientsh1 for the
SENT specimens used in this paper will be based on those g
in @23#.

SENB specimens were also investigated by Shih and Nee
man @23# and they write the fully plastic solutions as

J5as0e0W~12ā!h1S M

M0
D n11

(36)

where

M050.364s0W2~12ā!2 and M52E
0

W

syy~x,y5H !xdx.

(37)

Expressing the applied momentM in terms of the remote stres
s`56M /W2 as indicated in Fig. 1 and applying the Hoff analog
to expression~36! with a normalization according to~29!, we
obtain the creep solution

C̄* 5~12ā!h1S 1

2.184~12ā!2D n11

for SENB specimens.

(38)

In a similar way, the fully plastic solution of Kumar et al.@22#
for CCT specimens,
Fig. 2 Contours of Mises stress according to finite element analysis in „a… SENT, „b… SENB, and „c… CCT specimens
„aÕWÄ0.2…
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J5
ae0

s0
n a~12ā!h1S A3s`

2~12ā!
D n11

, (39)

allows to directly obtain

C̄* 5ā~12ā!h1S A3

2~12ā!
D n11

for CCT specimens.

(40)

The values ofh1 from the accurate fully plastic solutions of Sh
and Needleman@23# are available only for SENT and SENB
specimens. Therefore, the values for the CCT specimens wil
taken from@22#.

5.2 Results and Discussion. After having computedC̄* for
SENT, SENB, and CCT specimens, we need to identify the
Journal of Applied Mechanics
h

be

pa-

rameterA2* for each configuration in order to completely dete
mine the near-tip fields. For this purpose, we have carried
small-strain finite element analyses of steady-state creep in
normalized SENT, SENB, and CCT specimens. For these ca
lations, we taken55 and consider plane-strain specimens w
ā5a/W50.2, 0.5, and 0.75. By virtue of symmetry, only a half
the specimen geometry needs to be discretized. The computa
are carried out incrementally with the elastic-creeping constitu
law ~5! with n50.3 andE/s`5103, and are stopped when stead
conditions have been attained.

The differences in steady-creep stress fields among the t
specimens witha/W50.2 are shown in Fig. 2. These results sho
that only quite close to the crack tip, the stress distributions
similar while they become more and more different with incre
Fig. 3 Normalized opening stress ŝuu„ r̄ ÕL̄ ,uÄ0… in „a… SENT and „b… SENB
specimens „aÕWÄ0.2…
JUNE 2000, Vol. 67 Õ 377
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Fig. 4 Normalized radial stress ŝ rr „ r̄ ÕL̄ ,uÄ0… in „a… SENT and „b… SENB speci-
mens „aÕWÄ0.2…
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ing distancer̄ . This serves to emphasize that the constraint eff
in creep structures is important and cannot be neglected.

A convergence study has been carried out for the SENT
SENB specimens havinga/W50.2 by using three meshes wit
different degrees of refinement around the crack tip. Figures 3
4 show the variations of the normalized opening stres
ŝuu( r̄ /L̄,u50) and the radial stressesŝ rr ( r̄ /L̄,u50) ahead of the
crack. These figures show that good convergence has been
tained. Also they show that the deviations with respect to
corresponding HRR solutions are significant and even quite la
in the SENT specimen. In both cases, the HRR field is only do
nant in a very small region near the crack tip.

Furthermore, Figs. 3 and 4 illustrate the fitting results to obt
the corresponding parameterA2* . Two-term and three-term ex
pansions are obtained by limiting the asymptotic field~27! to the
2000
ect

nd

and
ses

ob-
he
rge
i-

in

second and third terms, respectively. Forn55, Yang et al.@13#
give p50.05456 for the second term exponent whileq50.2758
according to ~24!. One way to identifyA2* is by fitting the
asymptotic fields ofŝuu or ŝ rr to small-strain finite element so
lutions for a complete specimen. Yang et al.@13# and Chao et al.
@20# have found that the second-order parameter identified in
range 0<u<45 deg varies only slightly with the location, an
generally, the identification of their parameterA2 in this region
has been found to deliver appropriate higher-order fields fo
wide range ofu. Motivated by this experience, we here determi
A2* by fitting the two-term or three-term expansions ofŝuu and
ŝ rr along u50 deg to the finite element results over a certa
range 0, r̂ , r̂ c , with r̂ c depending on geometry and crack dep
ā. Chao et al.@20# have shown that in the ‘‘near-tip’’ range o
Transactions of the ASME
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Fig. 5 Angular distributions of the effective stresses at r̄Ä0.0196 in „a… SENT
and „b… SENB specimens „aÕWÄ0.2…
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0, r̄ ,0.1, their parameter identified under fully plastic conditio
can describe the near-tip stress distribution. This range cover
interval 0, r̄ /L̄5 r̂ ,0.4 for all specimens considered in th
paper.

Figures 3 and 4 show thatŝuu is less sensitive to the mes
refinement thanŝ rr . Hence, by using a relatively fine mesh,A2*
can be identified fromŝuu with a good degree of accuracy. By s
doing for the SENT specimen witha/W50.2, we obtainedA2*
525 for the two-term expansion and20.9 for the three-term
expansion~Fig. 3!. On the other hand, fitting on the basis ofŝ rr

yields A2* 523.1 and21.03 for the two and three-term expan
sions, respectively. For the SENB specimen witha/W50.2, the
A2* values based onŝuu andŝ rr agree very well (A2* '20.4) by
using the three-term expansion whereas its values for the
term expansion are21.2 fromŝuu and20.94 fromŝ rr . Since the
difference in ŝuu- and ŝ rr -basedA2* values is smaller for the
hanics
s
the

s

o

-

wo-

three-term than for the two-term expansion, we can conclude
a three-term expansion indeed provides a more accurate des
tion of the actual near-tip fields than a two-term expansion. F
ures 3 and 4 indicate that the fitting can be performed either on
radial variations ofŝuu or on both ŝuu and ŝ rr to obtain the
correspondingA2* . For moderately low constraint geometrie
such as the SENB specimen, the deviation of the near-tip fie
from the HRR solution is not very large, so thatA2* can be reli-
ably obtained fromŝuu . However, in the cases where the devi
tion with respect to the HRR solution is quite large, a comprom
between the values ofA2* from ŝuu andŝ rr may be necessary. In
the remainder of this paper, the identification ofA2* for all con-
sidered specimens will be based onŝuu .

In order to have a further appreciation of the quality of t
three-term expansion, Fig. 5 shows the angular distributions
effective stress atr̄ 50.0196 according to the HRR solution,
JUNE 2000, Vol. 67 Õ 379
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three-term expansion and the finite element results for the
specimens referred to above. Especially in the interval 0<u<30
deg approximately~but also for 150 deg<u<180 deg!, the devia-
tions from the HRR solution are significant. Such differences
completely ignored in$J,Q% approaches~@4#!, which collapse all
higher-order terms in an additional hydrostatic stress field; th
fore, these approaches are expected to have very limited app
bility in steady creep and fully plastic conditions. The three-te
expansion can indeed pick up the main features of the deviatio
the finite element results from the HRR solution quite well, b
small quantitative differences remain. The quality of the appro
mation by a three-term expansion is better in the SENB speci
~Fig. 5~b!! than in the SENT specimen~Fig. 5~a!!. This observa-
tion is consistent with the discussion above and is essentially
to the fact that when the deviation from the HRR solution
relatively large, the truncation of the series expansion at the th
order term has some limitation to fully represent the crack
stress fields.

The identification results ofA2* using two-term and three-term
expansions for different types of specimen with various rat
a/W are summarized in Tables 1 and 2, respectively. The valu
A2* is negative for all the studied specimens, and varies subs
tially with the order of truncation. The general tendency is that
absolute value ofA2* increases drastically witha/W, whereas the

Table 1 Values of A 2* for a two-term expansion of the
asymptotic fields

a/W 0.2 0.5 0.75

SENB 21.20 22.80 218.50
SENT 23.10 210.00 269.00
CCT 24.75 28.00 218.50

Table 2 Values of A 2* for a three-term expansion of the
asymptotic fields

a/W 0.2 0.5 0.75

SENB 20.4 21.00 26.25
SENT 20.90 22.50 220.00
CCT 20.79 21.45 23.00
380 Õ Vol. 67, JUNE 2000
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values ofA2
(W) for fully plastic flow ~@20,21#! do not. This can be

understood by examining relation~32! and by plotting
(C̄* )p11/n11 according to~35!, ~38!, and ~40! as a function of
a/W ~see Fig. 6!. For all specimens considered here, (C̄* )p11/n11

increases rapidly witha/W for deep cracks (a/W>0.5) and this
explains the observed tendency. Moreover, relation~32! along
with the values ofA2* for the three-term expansion given in Tab
2 ~for n55!, can be used to compute the corresponding value
A2

(W) . These are shown in Fig. 7~a! for SENB, SENT, and CCT
specimens, and indeed vary only mildly witha/W.

To estimate the reduction in stress level at a certain dista
from the crack tip~i.e., loss of constraint!, we focus on~23! and
~26! and substituteL5W. It is noted that both the second an
third-order terms contribute to a reduction ins rr and suu for
A2

(W),0 sinceŝ rr
(1).0 and ŝuu

(1).0 while ŝ rr
(2),0 and ŝuu

(2),0.
Therefore, for a givenC* and s` , the loss of constraint is di-
rectly related toA2

(W) . Figure 7~a! shows that the CCT specimen
have the lowest constraint.

For comparison, Fig. 7~b! includes Chao and Zhu’s@21# fully
plastic results for SENB and CCT specimens. The observa
that our creep results forn55 do not order exactly with their
values forn53 and n510 may be partly due to the fact tha
different finite element meshes were used, but are believe
stem mainly from differences in the way that the finite eleme
stress fields are fitted to the asymptotic fields. With this in mi
the general tendency is good and shows that our results base
steady creep calculations and relation~32! allow to recover Chao
and Zhu’s@21# results obtained under large-scale yielding up
fully plastic conditions.

It is pertinent to note that the finite element computations h
ignored finite strain effects leading to blunting. This is not on
for a fair comparison with the asymptotic solution, which is al
for infinitesimal strains, but is in fact essential since a finite str
steady creep solution does not exist. Under a constant rem
loading, creep deformations will continue to accumulate, lead
to blunting and continuously evolving fields.

We are not aware of any published experimental work t
evidences the effects of crack-tip constraint on creep cr
growth. However, Parks@25# and his co-workers observed rad
cally different patterns of creep damage in SENB and CCT sp
mens. As we know that CCT specimens have a much lower c
straint than SENB specimens, it is likely that the constraint eff
Fig. 6 Evolution of „C̄* …p¿1Õn¿1 with aÕW in SENT, SENB, and CCT
specimens for nÄ5 „pÄ0.05456…
Transactions of the ASME
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Fig. 7 Values of A 2
„W… for „a… SENB, SENT, and CCT specimens as obtained from our creep

calculations and converted using „32…, „b… SENB and CCT specimens compared with the fully
plastic results of †21‡
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has a significant influence on the damage pattern as well as
crack growth rate and direction in the near-tip region. Crack
constraint effects on creep fracture will be studied in a forthco
ing paper.

6 Conclusion
This paper proposes higher-order fields near a sharp crack

steadily creeping solid, limited to the third term, which are d
rived from an asymptotic development analogous to that
Sharma and Aravas@16# and Yang et al.@13# for elastoplastic
bodies. The analysis has shown that the higher-order fields, w
account for the constraint effect imposed by the specific geom
lied Mechanics
the
tip
m-

in a
e-
of

ich
try

and loading configuration, are controlled by two additional para
eters:A2* and s` . The latter is a reference stress, which can
for instance defined as the effective Mises stress in the absen
the crack. Thus, the remote loading level is characterized byC*
ands` . Together, they also define a creep characteristic len
L5C* /(Bs`

n11), that serves as a natural scaling parameter
the radial variation of the higher-order fields. By means of t
scaling properties applied to power-law materials, we have pro
that A2* is only dependent onn, the geometry shape and loadin
configuration, but is independent of the loading level.

Small-strain finite element computations of three popular t
JUNE 2000, Vol. 67 Õ 381
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specimen geometries have been carried out to identify the valu
A2* . The numerical results have confirmed that the near-tip st
distribution varies significantly from one type of specimen to a
other. Therefore, a creep fracture characterization based
$C* ,A2* ,s`% is expected to be more accurate than the curr
practice based onC* only, because the latter neglects the co
straint effect.

Finally, by virtue of the Hoff analogy, we have derived a re
tion betweenA2* and the second-order parameterA2

(W) in the fully
plastic case. This relation has been confirmed numerically
allows to directly exchange the values of these parameters
tween creeping and fully plastic situations.
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Constitutive Dynamic-Order
Model for Nonlinear Contact
Phenomena
A dynamic integro-differential operator of variable order is suggested for a more
equate description of processes, which involve state dependent measures of elas
inelastic material features. For any negative constant order this operator coincides
the well-known operator of fractional integration. The suggested operator is espec
effective in cases with strong dependence of the behavior of the material on its pr
state—i.e., with pronounced nonlinearity. Its efficiency is demonstrated for cases o
coelastic and elastoplastic spherical indentation into such materials (aluminum, v
and into an elastic material (steel) used as a reference. Peculiarities in the behavior o
order function are observed in these applications, demonstrating the ‘‘physicality’’ of
function which characterizes the material state. Mathematical generalization of
fractional-order integration-differentiation in the sense of variability of the operator
der, as well as definitions and techniques, are discussed.@S0021-8936~00!02102-4#
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1 Introduction
The large body of research on material modeling in general

polymer modeling in particular can be classified in two distin
branches. The first seeks the origin of the material behavior a
micro level, i.e., at that of molecular chains, microdefects, e
The second group deals with phenomenological description a
macro parametric level of explanation. The present paper
dresses the second branch only. Note that probabilistic feature
the corresponding statistical ensembles are also essentia
evaluation of the macro response of the material.

The most general and common approach to material beha
postulates, that local material response to an external stress
point occupied at the timet by a particle in the deformed body, i
uniquely determined by the history of motion and temperature@1#.
Krajcinovic @2# assumes that if the continuum is homogeneo
and isotropic on the macro scale, the constitutive description
the interconnection between stress, deformation, and temper
can be relaxed to the following form:

s~ t !5C@F~s!,T~s!, T~s!,0,s<t#, (1.1)

whereC is the tensor-valued response functional,F(s) the history
of the deformation gradient up to timet, andT temperature. The
constitutive law~1.1! implies that the stress is a functional of a
preceding values of the deformation gradients, temperature,
temperature gradient. The current stress value is derived by
grating this functional over the time interval (0,t). Obviously, a
similar expression can be written for the case of deformation
response to a given load. The functional representation~1.1! is
much too complicated and cumbersome for engineering app
tions, especially in its general form. It is important to note that t
constitutive law is deterministic and assumes that a single str
versus-time function can correspond to predetermined historie
temperature and deformation fields. It makes no allowance
possible changes in the continuum caused by onset of defects
microcracks and displacement of their aggregations—process
highly probabilistic nature.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript
received by the ASME Applied Mechanics Division, December 21, 1998; final re
sion, April 9, 1999. Associate Technical Editor: A. K. Mal.
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Lee and Radok@3# suggested a simplified form of the function
C, which may be regarded as the well-known integro-differen
operator

s~ t !5c@x~ t !#5E
0

t

G~ t2t!
d

dt
@x~t!#dt. (1.2)

For some specific set of functions, for instanceG(t)5(t
2t)a21/G(a), this is the operator of fractional-order integratio
~@4#!.

The generalized time-dependent relationship between o
dimensional stresss and straine has the form of the operato
equation

s~ t !5De~ t !. (1.3)

For the two extremes:~a! purely elastic deformation,D is the
operator of multiplication by the modulus of elasticityE; and ~b!
purely viscous deformation, it is the differential operatorD
5h(d/dt), whereh is the viscosity coefficient. Thus, one ca
assume~1.2! to be a valid description of the intermediate sta
~@3#!. These operators were recently applied to viscoelastic pr
lems by Bagley and Calico@5#, Bagley et al.@6#, and Rossikhin
and Shitikova@7#.

Another, perhaps the most popular in ‘‘macro’’-material mo
eling, presentation of a viscoelastic solid is a system of spri
and dashpots~Maxwell elements!. The mathematical model o
this system is a linear differential equation, whose fundame
solution ~Green’s function! is accepted as the relaxation functio
or creep compliance function. Lee and Rogers@8# and Rabotnov
@9# noted that a more complex behavior of material response
cessitates a larger number of structural elements and thus lea
a higher order of the corresponding differential equations. Bard
hagen et al.@10# and many others tried to improve this model b
introducing additional types of elements—nonlinear springs, s
ing elements, etc.

Some theories of plasticity also should be mentioned. B
classical, i.e., implementing the yield surface concept~@11#!, vis-
coplasticity ~which this paper does not address!, and rate-
independent plasticity lead to description of the phenomena
terms of a set of differential equations~@12#!. A more modern
~fairly close to the present paper! philosophy lets us refer to the
so-called endochronic theory of Valanis@13#, originally formu-
lated for application to the mechanical behavior of metals a
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more recently applied to other materials, such as concrete~@14#!
and polymers~@15#!. The basis of the theory is an internal mater
time related to the material deformation history.

For a rate-independent one-dimensional case, this time mea
j can be defined as some parameter proportional to the s
~@11#!. The thermodynamics of the phenomenon~@13#! leads to the
Lee-Radok type~~1.2! type! of stress dynamics versus deform
tion history. The only difference is the internal timej instead of
the real timet in the integral.

2 Problem
From the physical point of view, the model of the Maxwe

solid is merely a tool for representing the actual material beha
via solution of differential equations. It is important to emphas
that evaluation of material response within the framework of s
a set of springs and dashpots does not imply any changes in
features versus material status. That is, the level of nonlinea
considered is unambiguously defined by both the system struc
and the structural elements and cannot be modified throughou
evolution of the system. Most experimental studies, howev
show that a proper material model should be modifiable in
sense of material evolution—for example, propagation of the p
tic zone under load~see, for instance, Rajic et al.,@16#! corre-
sponds to transformation of linear springs at the propagation f
into the nonlinear ones, changing the local properties of the
terial and its macro response.

Another type of internal inconsistency is characteristic for
case of the integro-differential operator of constant order~1.2!.
Consider, for instance, a material stress-strain curve under a
with a constant strain rate. By~1.2!, scaling of this strain rate
( ė* 5aė, a5const! leads to the same scaling of the material
sponse (s* (t)5as(t)) and magnification of any strain histor
causes the same magnification of the response (ė* (t)5K ė(t)
→s* 5Ks(t)). This result conflicts with most experimenta
studies of the stress-strain behavior. Let us demonstrate it by
next simple theoretical experiment. The direct method of rec
struction of the kernelG ~in ~1.2!! consists in the determination o
the material response to the step load:

x~ t !5H 0 for t,t0

h for t>t0
.

By ~1.2!, the material response will be proportional toh, with
the same time pattern.

s~ t !5h•G~ t !

In reality, small values ofh correspond to more elastic materi
behavior and the stress should follow the strain time pattern w
larger ones should reflect some features of inelastic beha
Therefore, the uniqueness ofG in ~1.2! is inapplicable for wide
ranges of stresses or strains over the loading history.

Finally, the intrinsic drawback of all the theories mention
above is the asymmetry in the remedy for the inverse probl
that is, the strain-valued material response to the applied st
Moreover, although some theories~like that of Valanis! use the
concept of thermodynamics involving state variables, no ph
cally sound parameter responsible for the material state has
suggested.

3 The Model
Let us consider, for simplicity, the one-dimensional isotherm

problem of material response. The definition of this response
pends on the parameter serving as input. In the case where a
load is considered, the response is the deformation, while incr
of the deformation leads to response in the form of internal str

As the ‘‘elasticity’’ and ‘‘viscosity’’ effects accompany the
loading process throughout and the link between them varies,
isfactory description of the phenomenon is only possible und
governing operator of dynamic order. This dynamic order refle
384 Õ Vol. 67, JUNE 2000
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the material evolution within the space bounded by the pur
elastic and purely viscous extremes. Thus, the correct operatD
in ~1.3! should be compatible with the continuous process of
stateS(t), i.e.,

D5Da~S~ t !! (3.1)

and

s~ t !5Da~S~ t !!e~ t !. (3.1a)

Here, the fractional differentiation order functiona(S(t)) is
some bounded function of the material stateS(t), i.e., 0
<a(S(t))<1. The limiting values ofa correspond to the states o
pure elasticity (a50) and pure viscosity (a51). For the case of
material response to a load,

e~ t !5Db~S~ t !!s~ t !. (3.2)

Db(S(t)) is the operator of creep compliance, with limitingb
values of21<b<0. The operatorD in ~3.1! depends exclusively
on the state functionS(t). The present work simplifies the prob
lem by dealing with the dynamic order, namelya5a(s(t)) and
b5b(e(t)) in ~3.1! and ~3.2!, rather than with their dependenc
on the material state. Suitable choice ofb~e! permits correct pre-
sentation of the nonlinear plastic flow process. Note that b
~3.2! and ~3.1a! are functional equations with unknowns on bo
sides of the equation. Thus, we are introducing a new clas
operators, namely, those of state evolution, whose outstan
feature is that their order depends on the history of the mate
response—so that they are extremely nonlinear. Unlike th
constant-order counterparts, they exhibit nonlinear behavior e
for an input which is a sum of other inputs. That is, ifs i(t)
5Da(s i (t))e i(t), i 51,2, thens1(t)1s2(t)ÞD(e1(t)1e2(t)).

The application of this type of operators is demonstrated on
examples of contact problems of viscoelastic and elastoplastic
formation. For simplicity, the one-dimensional problem of is
thermal material response is examined in the present work.

The next section deals with the integro-differential operator
variable order~IDOVO!, its definition and features, as well a
operator reciprocal to IDOVO.

4 Integro-Differential Operator of Variable Order
Consider a linear functional setL5$x(t)%, whose elements

x(t) are real or complex functions of real variablet. The function
x(t) is supposed to be definite fort>0, absolutely integrable
one-valued, and with a finite number of discontinuities in a
finite interval@0,T#. Let a5a(t) be a continuous function of the
parametert. Then, we define the dynamic differential operator
time-dependent orderDa(t) as follows:

Dax~ t !5
dm

dtm E0

t ~ t2j!m212a~ t2j!

G~m2a~ t2j!!
x~j!dj, (4.1)

wherem is the integer part ofa11 for a>0 andm50 for a
,0;a(t) is the order function of the operatorD and G is the
gamma function

G~x!5E
0

}

e2jjx21dj.

The operatorDa is linear on the setL5$x(t)%. For any nega-
tive constanta(t)5a0,0, it is a Riemann-Liouville fractional
integral of ordera0 or an Euler transform of the first kind~@4#!.
For integera5n, Dn is an ordinary operator of integration~for
n,0!, or of differentiation~for n.0!. Note that for a constan
a,Da coincides with ~1.2!. D is commutative:DaDb5DbDa.
Limitations ona and b are the same as in~@17#!. The operator
D2b is the reciprocal ofDa, if a andb satisfy the relation

E
0

t ~ t2j!2b~ t2j!j211a~j!

G~12b~ t2j!!G~a~j!!
dj5U~ t ! (4.2)
Transactions of the ASME
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whereU(t) is the unit function~proofs are given in the Appendi
ces!. A more detailed study of the IDOVO is forthcoming.

The problem of reconstruction ofa(t) for predeterminedx(t)
andy(t)5Dax(t) now arises. Denoting the kernel ofDa as

gm~ t !5
tm212a~ t !

G~m2a~ t !!
(4.3)

we have

y~ t !5
dm

dtm E0

t

gm~ t2j!x~j!dj.

Methods for solving this Volterra integral equation are w
known. Rewriting~4.3! in the form

a~ t !52 log~ t12mG~m2a~ t !!gm~ t !!/ log t (4.4)

permits reconstruction ofa(t) by an iterative procedure. Thi
technique is presented in Section 6.

5 Viscoelastic Deformation of Material by Spherical
Indentor „Principles of Demonstration Model…

Although the IDOVO was originally intended for plastic mat
rials, the examples presented below are based on indentation
which usually involve metals. The main reasons for this cho
are: the indentation tests are strongly dependent on the visco
tic and elastoplastic features of the tested materials, and more
the tests reported in literature are often supported by avail
experimental data.

In the articles quoted above, in which fractional differentiati
was applied to viscoelastic problems, the order of the differen
operator was fractional but constant. In the following, the diff
ential operator of variable order is applied to the problem of p
etration of a spherical indentor into a plane. According to
Hertz formulas for the purely elastic case, the radius of the con
circle a and the pressurep(r ) within this circle are given by

a3~ t !5
3

8

1

2G
P~ t !R (5.1)

p~r !5
4

pR
2G~a22r 2!1/2 (5.2)
Journal of Applied Mechanics
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whereR is the radius of the sphere;P(t) is the load on the inden-
tor at timetT; T is a some unit of time;t dimensionless variable
2G5E/(11n);E,n are the modulus of elasticity and Poisson
ratio of the compressed material; andr is the distance from the
center of the contact circle (0<r<a). To obviate the dimension-
ality problem, we replaceP(t) by P0•x(t), wherex(t) is a di-
mensionless function. Since 1/2G represents the elastic propertie
of the material, it should be replaced in the viscoelastic situat
by the IDOVO as follows:

1

2G
→ 1

2G0
D2a~S~ t !!.

The functiona(S(t)) in this illustrative example is presented a
a(t). Thus in the viscoelastic situation~5.1! the following change
takes place through the variable-order operator of fractional in
gration:

a3~ t !5S 3RP0

16G0
DD2a~ t !x~ t !5S 3RP0

16G D E
0

t j211a~j!

G~a~j!!
x~ t2j!dj.

(5.3)

According to the earlier assumptions,a(t) should vary from 0
~purely elastic state! to 1 ~purely viscous state!. Let us demon-
strate the elastic-viscous dynamics for the following model
a(t)

a~ t !51222t.

Figure 1 represents the dependence of the radius of the co
circle a on t for x(t)5t.

The inverse problem can be written as follows:P(t)
5(8/3)(2G/R)a3(t) or x(t)5Db(t)(a(t)/c)3, where c3

53P0R/16G0 andDb(t) is the reciprocal operator toD2a(t). This
direct approach, however, does not yield the pressure distribu
over the contact zone. Therefore, in order to reconstruct it
have to use an operator analogous to~5.2!, which should also
be considered as the fractional differentiation:p(r ,t)

5(8G0 /pR)Db* (t)@a2(t)2r 2#1/2. As indicated above, in the
general caseb(t)Þb* (t). The notion of model verification con
sists on derivingp(r ,t) subject tob(t)5b* (t). Thus, integrating
p(r ,t) over the entire contact zone must yield

P* ~ t !5P~ t !, (5.4)
Fig. 1 Radius of contact circle versus time of load application
JUNE 2000, Vol. 67 Õ 385



Fig. 2 Pressure versus time of load application
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if the model properly describes the phenomenon.
Denoting

n~ t !5E
0

t j211a~j!

G~a~j!!
x~ t2j!dj,

we have

P~r ,t !5
8G0

pR
c

d

dt E0

t j2b~j!

G~12b~j!!
@n2/3~ t2j!2~r /c!2#1/2dj.

(5.5)

The functiong1(j)5j2b(j)/G@12b(j)# was determined ac
cording to~3.3! ~see Appendix B!. Note that the condition~5.4! is
met in our case.

Figure 2 shows the dependence of the pressurep on time for
386 Õ Vol. 67, JUNE 2000
r 50,0.2,0.4,0.6,0.8,1.0~curves 1–6, in that order!, and Fig.
3—that of p on r for t50.01,0.5,1.0,1.5,2.0~curves 1–5 in that
order!. The area of the contact zone and the pressure at any p
in it increase with the loading time, while the pressure vers
distance from the center decreases.

Johnson@18#, who considered a purely viscous process of d
formation assuming 2G→d/dt, obtained

p~r ,t !5
P0

2pa
~a22r 2!21/2.

In such a case the pressure tends to infinity at the boundarie
the contact zone. The present approach, as can be seen from
2–3, suggests that the pressure~5.4! tends to zero near the bound
Fig. 3 Dependence of pressure on contact radius
Transactions of the ASME
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ary, and, therefore, these results seem to be more correct from
physical point of view. Note, that the results also satisfy the
terion ~5.4!.

6 Elastoplastic Deformation „Experiment-Based
Model…

As an actual example illustrating the reconstruction of the or
of IDOVO, let us consider time-independent~nonviscous! elasto-
plastic deformation.

Brinell introduced the method of the material hardness deter
nation in which a steel spherical indentor penetrates into the s
ied material. The method permits estimation of some mate
characteristics~elasticity modulus, Poisson’s ratio, yield stres
and hardness!. As a supplement, Sheivechman and Suzdalnit
@19# suggested an indentational method for determination of
adhesion parameter. Francis@20# showed that spherical indenta
tion in an elastoplastic material comprises in three distinct sta
In the elastic stage the deformation is reversible and can be
scribed by the Hertz solution. A transitional regime sets in w
formation of a plastic zone under the contact region. In the th
stage the behavior of the material under the indentor remains
plastic.

We resort to experimental indentation data obtained by F
and Swain@21,22# in order to determine the operator equati
relating the stresses and strains in the form~1.3!. They represent
the results of action of a 10mm indentor on an aluminum spec
men. These data~op. cit., @22#, Fig. 12! are shown in Fig. 4. The
test values are marked by asterisks.

We consider the relationship between the loadP and the pen-
etration depthh in the form

h1.5~p!5
3P0

4E0R0.5~p1D2b~p!p!

5he
1.5~p!1cpE

0

p j211b~j!

G~b~j!!
~p2j!dj, (6.1)

wherecp53P0/4E0R0.5, he(p)5cpp—the linear~elastic! part of
the deformation,p—the dimensionless compressive load.

Denotingy(p)5cp
21h1.5(p), ye(p)5cp

21he
1.5(p) and

g~j!5
j211b~j!

G~b~j!!
(6.2)
Journal of Applied Mechanics
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we obtain the Volterra equation

y~p!5E
0

p

g~j!~p2j!dj1ye~p!. (6.3)

Consider the polynomial approximation of the experimen
data:

y~p!5p1(
k52

n

akp
k. (6.4)

Substituting~6.4! in ~6.3! and solving obtained equation w
easily find that the polynomial approximationg(j) has to satisfy

g~j!5
1

a1
(
k50

n22

~k11!~k12!ak12jk. (6.5)

Equating~6.2! and ~6.5! and using a table of test loadspi , i
51, N, we obtain a set of nonlinear algebraic equations

Pi
b2G~b!Pi(

k50

n22

~k11!~k12!ak12Pi
k50.

Further, we findb i for each point (Pi ,hi), with the aid of a
routine iterative procedure of interval halvingb i

( j 11)

5F(Pi ,hi ,b t
( j )), 0<b i

j,1, j 50,1,2 . . . .
The behavior of the order functionb(P) is shown in Fig. 5.

The operatorD2b(P) performs integration. The functionb(P) in-
creases up to 0.3 and subsequently stabilizes at that level.
result leads to an alternative conclusion relative to Field a
Swain @22#, who held that for loads of 20 mN and higher th
behavior of aluminum is fully plastic. According to our own re
sults, the aluminum specimen loaded by an indentor of small
dius 10mm exhibits propagation of the plastic flow at the initi
stages of penetration~increase of the operator order! and acquires
some ‘‘equilibrium’’ semi-plastic state~saturation of the operato
order below 1!. As a comparative example, indentation of elas
material was also tested. Figure 3 in Field and Swain@21# presents
the dependence of the depth penetration on the applied loadP
,178 mN). Here, the loaded material is steel and the spher
indentor has a diameter of 125mm. Plastic flow does not appear i
this case, the deformation remains elastic and the calcula
shows that the order of integrationb(P) is constant at zero.
Fig. 4 Experimental results of indentation
JUNE 2000, Vol. 67 Õ 387



Fig. 5 Order function b„P…

Fig. 6 Results of indentation for polymer

Fig. 7 Order function a„p … for polymer
388 Õ Vol. 67, JUNE 2000 Transactions of the ASME
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As a final example let us consider indentation test data obta
by Barlow @23# on a vinyl specimen. Log load versus log impre
sion diameter results are plotted in Fig. 6. Note that the test c
ered a total of 5.5 decades of equivalent load. In his original wo
Barlow concluded as follows.~1! For equivalent loads below 3
mg, the vinyl specimen remains fully elastic~a constant slope of 3
on the log load versus log diameter curve, according to the H
solution~5.1!!. ~2! For the load interval of 3–750 mg, the materi
exhibits partly plastic behavior.~3! For loads above 750 mg, th
behavior is fully plastic.

As in the preceding example, let us consider the relations
between the loadP and the contact diametera as

a3~p!5
3RP0

4E0
D2a~p!p1ae

35caE
0

p j211a~j!

G~a~j!!
~p2j!dj1ae

3

(6.4)

whereae(p)—the elastic part of the deformation,p—the dimen-
sionless load,ca53P0R/4E0 .

The behavior of the reconstructed order functiona(p) is shown
in Fig. 7. While Barlow’s first conclusion is clearly confirmed b
IDOVO ~a50 for P,3 mg!, the fully plastic range in terms o
the order function is not really reached. Unlike its aluminu
counterpart, no stable semiplastic range is observed for the v
specimen; rather, the order function increases continuously u
the limit valuea51.

Conclusions
The suggested integro-differential operator with dynamic or

~order function! generalizes the well-known operator of fraction
integration. For an integer order value~positive or negative! this
operator performs the standard operations of differentiation or
tegration. A rapidly convergent iteration process for calculation
the order function is suggested.

The order function as a material state function permits be
understanding of the viscoelastic and elastoplastic deforma
processes. In fact, the considered examples of spherical ind
tion show that the reconstructed order functions clearly bring
the well-known differences in the elastic-plastic features of s
diverse materials as aluminum, steel, and vinyl. They support
understanding that steel is almost absolutely elastic throughou
investigated range of applied loads, that aluminum becomes
tially plastic under elevated loads, and that vinyl goes throu
three stages—elastic under low loads, semi-elastic/semiplastic
der intermediate loads, and almost absolutely plastic under
evated loads.

The authors believe that the suggested approach will have
a scientific and a practical impact on this field of science a
engineering.
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Appendix A

Let operatorsDa andDb act onx(t) successively:DaDbx(t).
Let limited ourselves to the case of 0,a,b,1. Applying the
Laplace transform to this product and using the property of
Laplace transform for a convolution, we have
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L $DaDbx~ t !%5L H dm

dtm E0

t ~ t2j!m212a~ t2j!

G~m2a~ t2j!!

3dj
dn

djn E
0

j ~j2h!n211b~j2h!

G~n2b~j2h!!
x~h!dhJ

5pmL H tm212a~ t !

G~m2a~ t !!J pnL H tn212b~ t !

G~n2b~ t !!J L$x~ t !%

5L H dn

dtn E0

t ~ t2j!n212b~ t2j!

G~n2b~ t2j!!

3dj
dm

djm E
0

j ~j2h!m211a~j2h!

G~m2a~j2h!!
x~h!dhJ

5L$DbDax~ t !%.

According to the theorem of the single-valuedness of tra
forms we haveDaDb5DbDa. Hence, operatorD is commutative.

Appendix B
Let

0,a~ t !,1, (B1)

0<b(t),1, y5D2ax, z5Dby. Then

z~ t !5DbD2ax~ t !

5
d

dt E0

t ~ t2j!2b~ t2j!

G~12b~ t2j!!
djE

0

j ~j2h!211a~j2h!

G~a~j2h!!
x~h!dh

5
d

dt E0

t

x~j!djE
0

t2j ~ t2j2h!2b~ t2j2h!h211a~h!

G~12b~ t2j2h!!G~a~h!!
dh.

Hence,z(t)5x(t) andDb is the reciprocal operator toD2a, if
a andb are related by the dependence

E
0

t ~ t2j!2b~ t2j!j211a~j!

G~12b~ t2j!!G~a~j!!
dj5U~ t ! (B2)

whereU(t) is the unit function. Thus, we obtain~4.2!.
Denoting f (t)5t211a(t)/G(a(t)), g(t)5t2b(t)/G@12b(t)#,

one can rewrite equation~B2! as follows:

E
0

t

f ~j!g~ t2j!dj5U~ t !. (B3)

Let us assume that fort→0

a~ t !5ct1o~ t !. (B4)

Then f (0)5c. The left-hand side of~B3! is the convolution of
the functionsf (t) and g(t). Their Laplace transformsF(p) and
G(p) according to~B3! are related by the equationF(p)G(p)
51/p. Further,f (t) in the neighborhood oft50 is a regular func-
tion, i.e., for t→0 we have f (t)5c1(k51

` akt
k. Then, for

p→`, F(p)5(c/p)1(k51
` a(k(k!/ pk11), hence G(p)5(1/c)

1(k51
` bk(k!/ pk11), g(t)5(1/c)d(t)1w(t), where w(t) is a

function regular in the neighborhood oft50, d(t) is the delta
function. Equation~B3! may be rewritten as follows:

E
0

f

f ~j!F1

c
d~ t2j!1w~ t2j!Gdj5U~ t !

or

E
0

t

f ~j!w~12j!dj5U~ t !2
1

c
f ~ t !. (B5)
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After numerical integration of~B5! using the trapezoid rule, we
obtain the iterative sequence

w05w15
2

ch

c2 f 1

c1 f 1
,

w j5
2

c2h
~c2 f j !2

1

c Fw0f j12(
k51

j 21

f kw j 2kG , j 51, . . . ,N,

where f j5 f (t j ), w j5w(t j ), t j5 jT/N, (0,T) is the interval of
integration andN the number of its subdivisions for numeric
integration.

Remark. When condition~B1! is replaced by the inequalityc1
,a(t),c2 , ~B2! undergoes changes connected with the valuem.
The derivation of this equation is similar to that of~B2!. Condi-
tion ~B4! is of interest in applications. Ifa is constant,a.0, Eq.
~B2! is satisfied fora5b in accordance with the properties of th
gamma and beta functions andD2a is the reciprocal operator to
Da.
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Anomalous Moisture Diffusion in
Viscoelastic Polymers: Modeling
and Testing
It is now well known that Fick’s Law is frequently inadequate for describing mois
diffusion in polymers or polymer composites. Non-Fickian or anomalous diffusion
cally occurs when the rates of diffusion and viscoelastic relaxation in a polymer
comparable, and the ambient temperature is below the glass transition temperature~Tg!
of the polymer. As a result, it is necessary to take into account the time-depe
response of a polymer, analogous to viscoelastic relaxation of mechanical propertie
constructing such a model. In this paper, a simple yet robust methodology is prop
that would allow characterization of non-Fickian diffusion coefficients from moist
weight gain data for a polymer below its Tg . Subsequently, these diffusion coefficients
used for predicting moisture concentration profiles through the thickness of a poly
Moisture weight gain data at different temperatures for an epoxy adhesive is employ
calibrate the model. Specimen thickness independence of the modeling parame
established through comparison with test data. A finite element procedure that ex
this methodology to more complex shapes and boundary conditions is also validate
@S0021-8936~00!02402-8#
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Introduction
It is now widely recognized that moisture plays a significa

role in influencing the mechanical behavior, and therefore,
long-term durability of polymers and polymer matrix composit
~PMC!. Numerous diffusion models have been proposed over
years for modeling hygrothermal effects in polymers and PM
The one most frequently used by researchers is the o
dimensional Fickian model due to its simplicity and mathemati
tractability. Unfortunately, this model tends to overestimate
moisture absorption in panels for short diffusion time~@1#!. Some
researchers have suggested that the deviation can be explain
a two-stage Fickian process~@2,3#!. Others claim that the diffusion
process in a PMC is really non-Fickian~@4,5#!. The applicability
of Fick’s law for a given material system under a specified lo
ing cannot be guessed a priori but must be determined from m
ture absorption/desorption test data.

Frisch @6# and Crank@7# were among the first researchers
recognize and attribute non-Fickian moisture transport in resin
time-dependent molecular mechanisms within a polymer. I
landmark article, Frisch@8# suggested that a polymer below i
glass transition temperature (Tg) must possess history-depende
diffusion coefficients and experience time-dependent change
surface concentrations in order to maintain sorption-equilibrium
its boundaries. These time-dependencies are intrinsically rel
to the relaxation times for molecular rearrangement in the po
mer. To model this phenomenon, Weitsman@9# applied the basic
principles of continuum mechanics and irreversible thermodyn
ics to derive governing equations and boundary conditions
coupled stress-assisted diffusion in elastic and viscoelastic m
rials. Following an approach originally proposed by Biot@10# and
adapted by Schapery@11#, viscoelasticity was introduced b
means of scalar-valued internal state variables, also referred

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, De
12, 1998; final revision, Oct. 29, 1999. Associate Technical Editor: I. M. Dan
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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hidden coordinates. The results of the analysis allowed an ins
into the mechanism that causes a time-drift toward equilibrium
the boundary of a viscoelastic material subjected to a cons
chemical potential of the ambient vapor. The governing equati
also indicated that the saturation levels vary quadratically w
stress and that they can be expressed in terms of the dilatat
and the deviatoric stress invariant. However, the mathema
expression for diffusivity obtained from the analysis was too cu
bersome for experimental characterization and it was rec
mended that simplifications should be used in practical cases
this vein, Cai and Weitsman@12# developed a simplified method
ology within the framework of Fickian diffusion with step-wis
time-varying boundary conditions. Their procedure allowed
reduction of non-Fickian moisture weight-gain data in a man
that enabled the evaluation of the diffusion coefficient a
through-thickness concentration profiles. Even so, an iterative
merical procedure had to be employed for the evaluation of
time varying boundary concentrations in the form of an expon
tial ~Prony! series. They also discussed characterization of
non-Fickian diffusion coefficient using an approach that involv
the Carson transform.

Subsequently, Weitsman@13# extended the rigorous thermody
namic model to incorporate polymer ‘‘free volume’’ as an intern
state variable in order to include the effect of physical aging
moisture diffusion. The resulting governing equations were
amenable to closed-form solution due to mathematical comp
ity, although it was observed that the diffusion equation follow
a time-retardation process analogous to mechanical viscoel
response, and that it exhibited an aging behavior characterist
glassy polymers. Employing a similar approach, Weitsman@14#
developed a model for coupled damage and moisture transpo
an elastic, transversely isotropic, fiber-reinforced polymer co
posite. The damage entity was represented as a skew-symm
tensor and was included in the model as an internal state varia
All of these models are mathematically complex and are not a
nable to simple closed-form solutions.

For stretched polymer sheets where the diffusion-govern
equations are coupled with mechanical response through volu
ric strain, Roy et al.@15# presented a numerical procedure f
solving coupled diffusion equations using an approach based

c.
el.
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li-
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the free volume theory. Sancaktar and Baechtler@16# showed that
there is a substantial change in the free volume ratio in a poly
as a result of stress whitening, which in turn results in an incre
in moisture uptake in the stress-whitened region. A multivalu
diffusion coefficient, based on an earlier model proposed
Wong and Broutman@17,18#, was employed to model this effec
More recently, Roy@19# derived governing equations for history
dependent diffusion using irreversible thermodynamics, and
veloped a novel numerical framework for solving the comp
non-Fickian governing equations using the finite element meth

The objective of this paper is to present a new methodol
that enables characterization of non-Fickian diffusion coefficie
from moisture weight gain data in a polymer. The proposed
proach is very simple yet robust, and does not require Car
transforms and iterative procedures. Subsequently, these diffu
coefficients are used to predict moisture concentration pro
through the thickness of a polymer. Moisture weight gain data
different temperatures for an epoxy adhesive is employed to c
brate the model. Because the specimens were fully immersed
salt solution, the variation in the moisture boundary concentra
with time is assumed to be negligible. A finite element proced
that would extend this methodology to more complex shapes
time-varying moisture boundary conditions is also discussed.

Governing Equations for Diffusion in Viscoelastic
Media

Using the concept of internal degrees of freedom in a polym
molecule within the framework of irreversible thermodynamic
Frisch@8# employed the Gibbs-Duhem relation to model penetr
flux in a two component system with component 1 as the polym
and component 2, the penetrant. He showed that for a poly
below its glass transition temperature, the diffusivity and bou
ary concentration are not constants but vary continuously w
time. Based on this theory for polymers with glass-like transiti
it can be rigorously shown that, below its glass-transition tempe
ture (Tg), the diffusion governing equation in a polymer takes t
form

]C

]t
5

]

]Xi
S D̄ i j

]C

]Xj
D (1)

where the effective diffusivity is given by

D̄ i j ~Xi ,T,s,t !5F Li j

~12C!
S ]m

]C
1(

r 51

n
]m

] ln qr
D G (2)

whereC is moisture concentration,Xi are the spatial coordinates
T is temperature,s represents an invariant stress measure,t is
time, Li j are the Onsager coefficients,m is the chemical potentia
of the diffusing vapor in the polymer, andqr are hidden coordi-
nates that define the internal motion of individual chain segme
in polymer molecules, thereby representing viscoelastic beha
in a polymer. In addition, Eq.~1! is subject to the sorption
equilibrium boundary condition that requires the chemical pot
tial of the ambient vapor to remain unchanged with time.

For an unstressed isotropic viscoelastic polymer, the tim
varying effective diffusivity can be expressed in the form of
Prony series~@8#!,

D̃~T,t !5D0~T!1(
r 51

n

Dr~T!~12e2t/tr ! (3)

whereD0 , Dr are the unknown temperature-dependent Prony
efficients,t r are the corresponding retardation times, andn is the
number of terms in the Prony series.

Diffusion With Time-Varying Diffusivity. The governing
equation for one-dimensional diffusion in a polymer sheet
thicknessh is given by
392 Õ Vol. 67, JUNE 2000
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]C

]t
5D~ t !

]2C

]x2
(4)

whereD(t) is the time-varying diffusion coefficient assumed
be uniform through the thickness of the polymer.

The concentration boundary conditions are

C~0,t !5C~h,t !5C0 . (5)

Defining a change in variable

dU5D~ t !dt, (6)

giving

U~ t !5E
0

t

D~ t8!dt8. (7)

With this change of variable, Eq.~4! reduces to

]C

]U
5

]2C

]x2
. (8)

Equation ~8! can now be solved using a standard solution
constant diffusivity~i.e., D51) to giveC as a function ofx and
U. The modified boundary conditions in terms of the variableU
take the form

C~0,U !5C~h,U !5C0 (9)

subject to the initial condition

C~x,0!5Ci . (10)

The solution to the initial boundary value problem defined
Eqs.~8!, ~9!, and~10! is given by@7#

C2Ci

C02Ci

512
4

p (
n50

`
~21!n

2n11

3exp$2~2n11!2p2U/h2%cos
~2n11!px

h
. (11)

If Mi and Mt denote the total amount of diffusing substan
which has entered the sheet at time 0 andt, respectively, andM`
is the corresponding quantity after infinite time, then integrat
Eq. ~11! over the thicknessh gives

Mt2Mi

M`2Mi

512
8

p2 (
n50

`
1

~2n11!2
exp$2~2n11!2p2U/h2%.

(12)

Assuming that the diffusivity can be expressed in the form o
Prony Series

D~ t !5D01(
r 51

R

Dr~12e2t/tr !. (13)

Substituting Eq.~13! in ~7! gives

U~ t !5D0t1(
r 51

R

Dr@ t1t r~e2t/tr21!#. (14)

Substituting Eq.~14! in ~11! results in an expression for moistur
concentration as a function of distance and time

C2Ci

C02Ci

512
4

p (
n50

`
~21!n

2n11
expH 2~2n11!2p2

h2

3H D0t1(
r 51

R

Dr@ t1t r~e2t/tr21!#J J cos
~2n11!px

h
.

(15)
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Finally, substituting Eq.~14! in ~12! gives the moisture weight
gain fraction as a function of time

Mt2Mi

M`2Mi

512
8

p2 (
n50

`
1

~2n11!2
expH 2~2n11!2p2

h2

3H D0t1(
r 51

R

Dr@ t1t r~e2t/tr21!#J J . (16)

Finite Element Formulation. In order to extend the simple
one-dimensional analytical model to more complex shapes
boundary conditions, a three-dimensional finite element c
~NOVA-3D! was developed. The variational~weak! form of Eq.
~4! in three dimensions is given by

E
v~e!

Fu
]Ct

]t
1Dt

]u

]Xi

]Ct

]Xi
GdV2E

A~e!
FuS Dt

]Ct

]Xi
D ni GdA50,

i 51,3 (17)

whereu is an admissible variational test function. Based on
variational statement, the diffusion boundary conditions can n
be identified as

S Dt
]Ct

]Xi
D ni1q̂50 on A1

~e! ~specified solvent flux!

C5Ĉ on A2
~e! ~specified concentration!

where

A1
~e!1A2

~e!5A~e!

and ni are the components of the unit outward normal at
boundary. Thus,

E
v~e!

Fu
]Ct

]t
1Dt

]u

]Xi

]Ct

]Xi
GdV52E

A1
~e!

uq̂ dA. (18)

Finite Element Approximation. A standard finite elemen
interpolation of the concentration field over each element is gi
by

C~Xi ,t !5(
j 51

N

Nj~Xi !Cj~ t ! (19)

where Cj are the nodal concentrations,Nj are the interpolation
functions, andN is the number of nodes per element. Substitut
Eq. ~19! in ~18! and employing matrix notation, Eq.~18! becomes

@T~e!#$Ċ%1@K ~e!#$C%5$F ~e!% (20)

where the subscript (e) is used to denote that the equations a
satisfied over each element and

Tjk
e 5E

v~e!
~NjNk!dV

K jk
e 5E

v~e!
H Dt

]Nj

]Xi

]Nk

]Xi
J dV

F j
e52E

A1
~e!

Njq̂ dA , i 51,3 and j ,k51,N.

The time derivative$Ċ% is approximated using a standard the
family of approximations, yielding for timetn and tn11 ,

@A~e!#$C%n111@B~e!#$C%n5$p~e!%n , (21)

where

@A~e!#5@T~e!#1uDtn11@K ~e!#
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@B~e!#5@T~e!#1~12u!Dtn11@K ~e!#

$P~e!%5Dtn11~u$F ~e!%n111~12u!$F ~e!%n!.

Equation ~21! is solved using a value ofu50.5, which corre-
sponds to the Crank-Nicholson scheme and is uncondition
stable. Note that forn51, the value of the starting concentratio
in Eq. ~21! is known from initial conditions.

Diffusion Experiments
Absorption experiments were conducted on neat epoxy ad

sive specimens in a salt water solution. The epoxy specim
were cut from 0.51-mm~0.02-in.! thick sheets that were provide
by Oak Ridge National Laboratory~ORNL! personnel. Specia
care was taken to eliminate air bubbles from the sheets.
25.4-mm~1-in.! square specimens were dehydrated for 24 hou
weighted, dehydrated for an additional 65 hours, and weighe
ensure complete dehydration. Both steps were conducted at 7
in order to accelerate dehydration and the length of the sec
step was established by a series of preliminary experiments.
specimens were immersed in a salt water solution at four diffe
temperature levels~23, 50, 60, and 70°C!. The solution was
formed by mixing salt~five percent by weight! with de-ionized
water. The temperatures were controlled to within61°C. The
mass measurements were made using a Mettler balance that
range of 160 g with a resolution of 0.1 mg. The initial mass of t
specimens was typically 0.35 g, so that changes in mass of
proximately 0.05 percent could be resolved. The specimens w
weighted after wiping excess liquid from the surface of the spe
men. The frequency of the measurements decreased with tim
saturation approached. The duration of the experiments was
proximately six months. Subsequently, in order to ensure that
model parameters are indeed material properties that are inde
dent of specimen thickness, a separate set of absorption tests
performed at 23°C on epoxy specimens of thickness 1.194
~0.047 in.!.

Results and Discussion
The salt-water weight gain data clearly indicated that the dif

sion characteristic of this epoxy does not conform to Fick’s l
for the range of time and temperature considered in this study
a result, it became necessary to apply the non-Fickian diffus
model described in the previous sections in order to model di
sion in this material. For this purpose, time-varying diffusivi
characterization data necessary for the viscoelastic diffusion c
puter modeling were extracted from the salt water absorption
data. A Prony series representation of the time-varying diffusiv
for the epoxy was obtained by fitting Eq.~16! to the test data
employing a least-squares approach. The Prony coefficients
the corresponding retardation times obtained in this manner
the epoxy adhesive at 23°C, 50°C, 60°C, and 70°C are liste
Table 1. The same retardation times are used to describe the
dependent diffusion in epoxy at the four temperatures. Beca
the specimens were fully immersed in a salt solution, the varia
in the moisture boundary concentration with time was assume
be negligible. The boundary moisture concentration used as in
to the model for each temperature is listed in Table 2. The bou
ary concentrations were obtained by dividing the saturation m
ture weight gain for each specimen by the volume of that sp
men. A significant increase in boundary concentration w
temperature was observed as indicated by the data in Table

Figure 1 shows the comparison of closed-form solution a
finite element analysis~FEA! with test data for epoxy adhesive a
23°C, assuming time-varying diffusivity. In this figure, perce
moisture weight gain is plotted versus square root of time,
hours. A Fickian uptake curve with constant diffusivity is als
included to underscore the inaccuracy of using Fick’s law
model diffusion in this material. The parameters used for mod
ing Fickian uptake are tabulated in Table 3 for the four test te
JUNE 2000, Vol. 67 Õ 393



394 Õ Vol. 67,
Table 1 Diffusion Coefficient Data for Epoxy

Diffusion
Coefficient
~mm2/s!

Temperature
23°C

Temperature
50°C

Temperature
60°C

Temperature
70°C

Retardation
Time, t r

~sec!

D0 2.6899831027 2.784931027 1.317231026 9.729331027 –
D1 22.238331027 24.699831027 21.636531026 21.392331026 600
D2 1.384131028 9.264831027 1.301231026 2.482631026 3000
D3 5.324731028 23.34131027 23.970831027 21.59731026 6000
D4 2.1970531027 21.402231027 25.420831027 23.03431027 30000
D5 22.532331027 22.354531027 2.742331029 26.697231028 60000
D6 27.444931028 21.844931028 23.944831028 28.329431028 300000
e

e

d

ens

nt
tion
peratures. The agreement between the non-Fickian model pr
tion and test data is quite good. However, in order to ensure
the model parameters contained in Table 1 are indeed mat
properties that are independent of specimen thickness, a sep
set of absorption tests was performed at 23°C on epoxy specim
of thickness 1.194 mm~0.047 in.!. Figure 2 depicts the reduce

Table 2 Boundary Concentration Data for Epoxy

Temperature~°C!
Boundary Concentration

~gm/mm3!

23 3.36631025

50 4.03531025

60 4.1831025

70 4.1631025

Table 3 Fickian Curve Fit Parameters for Epoxy at Test Tem-
peratures

Temperature~C! Diffusivity ( 31027 mm2/s) Mmax ~percent!

23 1.46029 2.43985
50 2.93600 2.78245
60 3.85563 2.97554
70 3.68567 3.26497

Fig. 1 Percent moisture weight gain versus square root of
time for epoxy at 23°C
JUNE 2000
dic-
that
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arate
ens

absorption plot at a test temperature of 23°C for epoxy specim
of thickness 0.51 mm.~0.02 in.! and 1.194 mm~0.047 in.!, respec-
tively, together with the analytical model prediction. Excelle
correlation is observed between test data and model predic
over the specimen thickness range for this temperature.

Fig. 2 Reduced absorption plot for epoxy specimens of differ-
ent thickness at 23°C

Fig. 3 Percent moisture weight gain versus square root of
time for epoxy at 50°C
Transactions of the ASME
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Good agreement is also observed for moisture uptake in ep
at 50°C, 60°C, and 70°C as shown in Figs. 3, 4, and 5, res
tively. However, the shape of the curve in Fig. 5 seems to indic
that moisture uptake in epoxy becomes less anomalous and
Fickian as the test temperature approaches its glass transition
perature of 125°C~257°F!. The knockdown in theTg of the speci-
mens due to moisture ingress was not measured, but is unlike
be below 70°C. Therefore, these results seem to corrobo
Frisch’s@8# original hypothesis regarding the occurrence of tim
varying diffusion conditions in a glassy polymer at temperatu
below its glass transition.

Figure 6 shows a comparison of through-thickness normali
moisture concentration profiles att51.66 hours, predicted by th
non-Fickian analytical model and the finite element analysis
epoxy at 70°C. Close agreement is observed between the
predictions. A comparison with test data was not possible du
difficulties involved with measuring moisture concentratio

Fig. 4 Percent moisture weight gain versus square root of
time for epoxy at 60°C

Fig. 5 Percent moisture weight gain versus square root of
time for epoxy at 70°C
Journal of Applied Mechanics
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within a specimen. A Fickian profile is also included for compa
son. The figure shows that at early stages of uptake, the di
ences between the Fickian and non-Fickian profiles are insig
cant. However, significant differences in the two profiles beco
manifest at later times as shown in Figs. 7 and 8. This anom
could result in a significant error in stress computation if Ficki
concentration profiles are used in determining swelling strains
residual stresses in the epoxy.

Figure 9 shows the variation of the predicted non-Fickian d
fusion coefficient with time for epoxy at the four test temper
tures. The exponential decay in the diffusivity with time from a
initial value toward a final threshold value is analogous to
change in the viscoelastic relaxation modulus of a polymer. In
estingly, the final threshold value of diffusivity for each case
roughly the same, indicating that the influence of test tempera
on diffusivity becomes less significant as time progresses
saturation is approached.

Fig. 6 Through-thickness moisture concentration profile at
timeÄ1.66 hours

Fig. 7 Through-thickness moisture concentration profile at
timeÄ83.3 hours
JUNE 2000, Vol. 67 Õ 395
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Conclusions
A simple yet robust methodology that enables the non-Fick

diffusion coefficients from weight gain data in a polymer to
extracted without recourse to Carson transforms and iterative
cedures was presented. Subsequently, these diffusion coeffic
were used to predict moisture concentration profiles through
thickness of the polymer. Because the specimens were fully
mersed in a salt solution, the variation in the moisture bound
concentration with time was assumed to be negligible. Salt w

Fig. 8 Through-thickness moisture concentration profile at
timeÄ508.3 hours

Fig. 9 Variation of diffusion coefficient with time for epoxy at
test temperatures
396 Õ Vol. 67, JUNE 2000
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weight gain data at different temperatures for an epoxy adhe
was employed to calibrate the model. A finite element proced
that would extend this methodology to more complex shapes
time-varying moisture boundary conditions was also validat
Good agreement between model prediction and test data was
served at all temperatures that were considered. Specimen t
ness independence of the modeling parameters was establ
through comparison with test data at one test temperature.
envisioned that additional model verifications will be perform
using different specimen thickness at other test temperatures
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Stiffening Effects of
High-Frequency Excitation:
Experiments for an Axially
Loaded Beam
According to theoretical predictions one can change the effective stiffness or na
frequency of an elastic structure by employing harmonic excitation of very high
quency. Here we examine this effect for a hinged-hinged beam subjected to longitu
harmonic excitation. A simple analytical expression is presented, that relates the eff
natural frequencies of the beam to the intensity of harmonic excitation. Experim
performed with a laboratory beam confirm the general tendency of this prediction, th
there are discrepancies that cannot be explained in the framework of the linear Gale
discretized beam model.@S0021-8936~00!01302-7#
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1 Introduction
According to certain theoretical predictions, one can change

stability of an elastic structure by employing harmonic excitat
of very high frequency~@1#!. We present a theory for a simpl
beam structure and test it experimentally.

There are a number of nontrivial effects of fast harmonic ex
tation. As ‘‘nontrivial’’ we consider any response to high
frequency excitation that cannot be described simply as h
frequency vibrations about the corresponding equilibrium with
excitation. For example, one can stabilize a pendulum in the
verted position by rapidly shaking its support up and down,
demonstrated experimentally and explained theoretically alre
by Stephenson@2# and Kapitza@3#. This well-known curiosity of
classical mechanics is a nontrivial effect, whereas the accom
nying overlay of small but fast vibrations is considered trivial.

Blekhman@4# gives a broad overview as well as in-depth th
oretical treatments of many such phenomena. Chelomei@5# and
Blekhman@6#, in more popular expositions, provide several illu
trative examples. Among recently investigated examples we m
tion vibration-induced sliding and transport of fluids or solids~@7–
12#!, change of friction properties~@13,14#!, and stabilization,
stiffening, shift or drift of static equilibriums, and change of line
natural frequencies and nonlinear properties~@15,16,5,17–27#!.

This paper deals with experimental validation of one particu
nontrivial effect of fast excitation for a particular structure: that
changing natural frequencies for a hinged-hinged beam—
equivalently: change of beam stiffness and buckling load. V.
Chelomei@5# describes an experiment where such a beam is bu
led due to static loading, and then straightened under the actio
longitudinal harmonic excitation of high frequency. In this pop
lar exposition there is no quantitative data for the experiment
V. Chelomei@16# apparently uses the same beam setup for exp
ments along with theoretical developments, however, without g
ing experimental details. Jensen@20# and Tcherniak@24# recently
provided more detailed analyses of this beam system paying
tention also to nonlinear effects and shear deformation and ro

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
17, 1999; final revision, Nov. 10, 1999. Associate Technical Editor: J. T. Jenk
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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inertia, though still without quantitative experimental support. T
present study was initiated to help remedy a seeming lack of
perimental support in this area.

The change of stability due to fast harmonic excitation is,
fact, a consequence of a shift in effective or ‘‘average
stiffness—or equivalently: of linear natural frequencies. In m
cases natural frequencies are more easily measured than is
ness or buckling load, and equally easy to predict. Therefore
test theoretical predictions of effects of fast excitation, we rely
small-amplitude natural frequencies as an adequate measure

Specifically we measured the lowest two resonance frequen
of a hinged-hinged beam for different intensities of fast harmo
longitudinal excitation. As will be shown, theory predicts the
frequencies to increase with the intensity of the excitation. T
experiments reproduce this main tendency, though there are
tain discrepancies that cannot readily be explained in the fra
work of the linear Galerkin-discretized beam model.

Section 2 describes the model system and the theoretical
dictions to be tested, whereas Section 3 describes the experim
setup and procedures. Section 4 gives the results, and Sect
the conclusions.

2 Theory
We derive here a theoretical model for predicting the effect

natural frequencies when fast harmonic excitation is added to
beam. The predictions will be tested against experimental res
in Section 4.

2.1 Equation of Motion. Figure 1 shows the beam mode
We consider a hinged-hinged elastic, slender beam with lengl.
The beam is assumed to be homogeneous and inextensible
bending stiffnessEI and mass per unit lengthrA. The boundary
conditions are hinged-hinged.

In the mobile end the beam is loaded by an axial force co
prising a constant loadN̄ and a dynamic componentV̄P̄ cos(V̄t),
whereV̄ is the frequency of excitation andP̄ is denoted thein-
tensityof excitation.

In the following we analyzesmall transverse motionof the
beam. Consequently, axial motions are negligible if the pulsa
excitation does not induce axial resonance and thus the inexte
bility condition is not violated. The frequency of excitation is
the following assumed to be high, but sufficiently low so that
resonance with very high-frequency axial modes occurs.
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A linear beam equation governing small transverse deflect
W(X,t) is obtained by considering force and moment balances
an infinitesimal beam element, giving

Ẅ1cẆ1hp22Ẇ991p24W991~N1VP cos~Vt !!W950,
(1)

whereX, W, and t have been rescaled into nondimensional va
ables,

X→ X

l
, W→ W

l
, t→vt, (2)

with v[(p/ l )2AEI(rA)21 being the first natural frequency fo
the unloaded beam, the nondimensional parameters are

V[
V̄

v
, N[

N̄

rAl2v2 , P[
P̄

rAl2v
, (3)

and where viscous dampingcẆ and internal dampinghp22Ẇ99
has been added.

2.2 Spatial Discretization. We use ordinary Galerkin dis
cretization, i.e., the transverse deflection is expanded as

W~X,t !5(
i 51

N

qi~ t !w i~X!, (4)

whereqi(t) are modal amplitudes andw i(X) mode shapes for the
unloaded beam,w i(X)5sin(ipX). Equation~4! is inserted into~1!
and we employ the standard Galerkin procedure, multiplying w
the mode shape functions and integrating over the beam len
Thus, we obtain the following set of discretized equations for
modal amplitudes:

q̈i1~c1 i 2~ ip!2h!q̇i1~v i
22VP~ ip!2 cos~Vt !!qi50, (5)

v i[ iAi 22p2N, (6)

wherev i are the natural frequencies, modified by the action of
static axial load. ForN.p22 we havev1

2,0. Hence, the load
N5p22 represents the buckling load, for which the beam buck
in its fundamental mode.

The equations in~5! are uncoupled due to the boundary con
tions, and each equation is recognized as a damped Mathieu e
tion ~@28#!. It is well known that the response may be resonan
V'2v i , i.e., in case of primary parametric resonance. In
following it will be assumed that the oscillation mode under co
sideration is not resonantly excited.

Full information about the effect of the fast harmonic excitati
can be deduced from~5!, e.g., by applying any of many integra
tion techniques. We rely instead on an analytical approach wh
allows us to obtain straightforward predictions for the change
the effective natural frequencies when fast excitation is added

An expression for the effective natural frequencies is obtai
in the following.

2.3 Separation of Fast and Slow Motion. We here apply
the method of direct partition of motion~DPM!, ~@4#!, in order to
obtain predictions for the effective frequency of slow oscillati
modes governed by Eq.~5!. The method applies a formal separ
tion between the fast and the slow motion of the individual os
lation modes. This separation allows for obtaining equations g

Fig. 1 A slender elastic beam with static plus time harmonic
axial loading
398 Õ Vol. 67, JUNE 2000
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erning theslow motion of the modes, where the nontrivial effe
of the fast excitation is included as additional slowly varyin
terms.

Two time scales are introduced,

T05Vt, T15t, (7)

whereT0 is a fast time scale describing the motion at the rate
the excitation frequency, andT1 is the slow time scale which
describes the motion at the rate of the slow natural frequenci

The motion of each beam mode is split up in a fast and a s
part,

qi~T0 ,T1!5zi~T1!1ef i~T0 ,T1!, (8)

where the fast partef i is assumed to have a zeroT0-average. The
small parametere, is included to emphasize that we restrict ou
selves to the case where the fast motion is small compared to
slow oscillations. We choosee[V21, sinceV already represents
a large parameter of the system.

Inserting ~8! into ~5!, and using the notationDi
j[] j /]Ti

j , we
obtain

e21D0
2f i12D0D1f i1D1

2zi1eD1
2f i1~c1 i 2~ ip!2h!~D0f

1D1z1eD1f!1~v i
22e21P~ ip!2 cos~T0!!~zi1ef i !50.

(9)

Now ~9! is averaged over one period of fast excitation. Usi
^ &51/2p*0

2p( )dT0 , we obtain

D1
2zi1~c1 i 2~ ip!2h!D1z1v i

2zi2^e21P~ ip!2 cos~T0!ef i&50,
(10)

as the equation governing the slow componentzi of the ith mode.
To obtain the fast componentef i , ~10! is subtracted from~9!

to yield

e21D0
2f i12D0D1f i1eD1

2f i1~c1 i 2~ ip!2h!~D0f1eD1f!

1v i
2ef i2e21P~ ip!2 cos~T0!~zi1ef i !

1^P~ ip!2 cos~T0!f i&50. (11)

Retaining only dominant terms of ordere21 we find

D0
2f i2P~ ip!2 cos~T0!zi50, (12)

which is readily solved forf i ,

f i52P~ ip!2 cos~T0!zi . (13)

We have obtained a first-order approximation for the fast
brating components, also known as theinertial approximation
~@4#!. Equation~13! is inserted into~10!,

D1
2zi1~c1 i 2~ ip!2h!D1z1v i

2zi1P2~ ip!4zi^cos2~T0!&50,
(14)

which since^cos2 T0&51/2 yields the final equation for the slow
components

D1
2zi1~c1 i 2~ ip!2h!D1z1ṽ i

2zi50, (15)

where

ṽ i[ ipA~ ip!2~
1
2 P21p24!2N. (16)

2.4 Effective Natural Frequencies in the Presence of Fas
Excitation. The modified natural frequencyṽ i takes into ac-
count the effect of the fast excitation. As appears, the effec
natural frequencies increase with added fast harmonic excita
For very small values of the intensityP of excitation,~16! shows
the effect of the excitation to be negligible, whereas forP large
compared to the buckling loadp22, the natural frequencies ar
predicted to increase asymptotically linearly withP.
Transactions of the ASME
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3 Experiments
The experiments were conducted in order to determine the

fects of fast harmonic excitation on the slow properties of
axially loaded beam. Specifically, we measured the two low
natural frequencies with varying intensity of excitation applied

3.1 Experimental Setup. Figure 2~a! shows the experimen
tal setup, and Fig. 2~b! the corresponding schematic.

Two steel beams with identical material properties were us
their data are given in Table 1. Beam A was used as a test sp
men, in order to estimate the beam stiffness. The experiment
beam A were carried out with free-free boundary conditions,
proximately realized by suspending the beam in soft rubber ba
placed near the nodal points for the first mode of vibration.

We measured the two lowest natural frequencies for Beam
The values are given in Table 1. By using the measured frequ
cies we were able to estimate the bending stiffness by appl
the standard formulaEI5rAv i

2( l /l i)
4, where l1'4.7300 and

l2'7.8532.
Beam B was used for the actual experiments. To accomp

pinned-pinned boundary conditions small pins were solde
along the ends of the beam. The pins, about twice the width of
beam, were then fitted into roller bearings built into the top a
bottom part of the setup.

The estimated bending stiffness was used to predict the na
frequencies for the unloaded Beam B~Table 1!, as these are no

Fig. 2 „a… The experimental system, „b… schematic of the setup
Journal of Applied Mechanics
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easily measured in the setup. As it turns out, a slight correctio
the predicted frequencies is necessary to obtain a closer fit to
experimental results. The need for this adjustment is thought to
a result of imperfections in the experimental setup.

We applied fast axial excitation to the beam by using pneum
piston vibration exciters, having internal vibrating masses. T
frequency of vibrations is adjusted by regulating the pressure
the air supply. The dynamic force produced by the exciters
specified to increase linearly with the frequency of vibrations.
our setup the exciters proved capable of producing a dyna
force of above 100N in the range 60–100 Hz for the medi
sized exciter~FP-12-M!, and 75–120 Hz for the small excite
~FP-12-S!.

3.2 Experimental Procedure. The natural frequencies o
the beams were measured by applying broad-band excitation
an impact hammer~B&K 8202!, and picking up the response wit
a laser velocity transducer~B&K 8323!. The signal from the
transducer was led through the power supply~B&K 2817!, a low
pass filter~KROHN-HITE 3323!, and to the digital signal ana
lyzer ~DATA PRECISION 6000!. Here the time series and a fre
quency spectrum computed using a standard FFT-procedure c
be recorded.

The dynamic force transmitted to the beam from the exciter w
measured by a force transducer~B&K 8200! built into the lower
beam support. The signal was led through a line-drive ampli
~B&K 2644!, a line-drive supply~B&K 2813!, and through the
filter to the signal analyzer. The integrated force measuring s
tem is specified to output 4.09 mV/N. The analyzer was set up
display time series of the dynamic force, the peak-to-peak fo
amplitude, as well as the frequency. The frequency of excita
was also occasionally checked using the signal from an acce
ometer, mounted near the exciters, and led through the cha
amplifier ~B&K 2635! to the analyzer.

Four sets of experiments were carried out with each exciter
varying the static load on the beam. The static load was chan
by increasing or reducing the mass of the counter load. The m
nitude of the static load,N, was estimated from the natural fre
quencies measured with a passive exciter, i.e., withP̄5P50. For
each experimental set, corresponding to a particular exciter
static load, 5–15 measurements were taken with varying exc
air pressure.

3.3 Experimental Observations. We here touch upon
some qualitative observations made during the course of the
periments and also point out some of the problems encounte
Quantitative experimental results and comparison with theory
be presented in Section 4.

Theory predicts the natural frequencies to increase with
intensity of the fast excitation. By and large the experiments s
port this prediction, both for the first and for the second natu
frequency. The theory assumes, however, that the excitation
quency is much larger than the natural frequencies considere
our setup, the second natural frequency is about 30 Hz, an

Table 1 Material data and natural frequencies for the unloaded
beams

Beam A B

Length, l @m# 0.500 0.538
Width @m# 0.028 0.028
Thickness@m# 0.001 0.001
Mass per unit length,rA @kg/m# 0.215 0.215
Measuredv1 @s21# 131. -
Measuredv2 @s21# 361. -
Estimated stiffness,EI @Nm2# 0.461 0.461
Predictedv1 @s21# - 49.9
Predictedv2 @s21# - 200.
Correctedv1 @s21# - 48.7
Correctedv2 @s21# - 195.
JUNE 2000, Vol. 67 Õ 399
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with excitation frequencies in the range 60–120 Hz this assu
tion is hardly fulfilled. Nevertheless, we did note an increase a
in the second frequency with added excitation.

Further, when the excitation frequency was close to twice
second natural frequency we observed parametric resonance
second vibration mode. This caused the frequency of oscillat
for the second mode to be locked at half the excitation frequen
and somewhat hindered estimation of the frequency of first m
natural oscillations. Occasionally, we also observed resonan
sponse of the third mode of oscillation, and in this case both of
lowest natural frequencies were rather difficult to measure. N
ertheless, we have included these measurements in our resul
tion whenever we believed that the estimation of the natural
quencies was reasonably accurate.

For a wide range of excitation frequencies the response of
beam was seemingly chaotic, sometimes violently. This was
interesting observation, but consequently no useful measurem
concerning natural frequencies could be obtained.

Occasionally we noticed that the measured input force was
simple time-harmonic, but included higher or lower harmoni
We believe this reflects the nonsinusoidal character of the fo
delivered by the pneumatic vibration exciter.

4 Results
Experimental results are here shown and compared to pre

tions based on~16!. We present the results in nondimension
form. Consequently, we haveṽ151 andṽ254 for N5P50.

Of a total of eight experimental sets, the sets #1, #2, #3, an
were performed with the small exciter~FP-12-S! with excitation
frequencies in the range 60–100 Hz, and sets #4, #5, #6, #7
performed with the medium-size exciter~FP-12-M! and 75–120
Hz.

4.1 Predictions for ṽ1 and ṽ2. Figure 3 shows results fo
the first natural frequencyṽ1 as the intensityP of fast harmonic
400 Õ Vol. 67, JUNE 2000
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excitation is varied. For each of the two vibration exciters, th
different experimental sets are presented with different st
loads. In the figure the diagrams are ordered correspondin
increasing static loadN.

As appears, the experimental results by and large support
theoretical predictions. The experiments generally produce
creasing values ofṽ1 as the intensity of excitation increases,
predicted. The order of magnitude of this increase is seen to
fairly well predicted too, even though for most experimental s
the theory predicts too high values ofṽ1 whenP is large. In set #1
a decrease inṽ1 is noted whenP is small. We observed for this
excitation frequency a resonant response of the third vibra
mode. This indicates some form of modal interaction, which is
accounted for in our linear model.

Figure 4 shows predictions and experimental results for
second natural frequencyṽ2 . As for Fig. 3 the diagrams are or
dered corresponding to increasing static load.

The predictions forṽ2 are also seen to be supported by mo
experimental sets. However, for sets #6 and #7 the theory pre
far too low frequencies compared to the measured values.
experimental results for these sets were however carried out
the medium size exciter, with the excitation frequency being o
slightly above twice the second natural frequency. The discrep
cies may originate from interaction between natural oscillatio
and parametric resonant oscillations. In set #4 a drop inṽ2 is seen
when P is small. These experimental values were obtained w
excitation frequencies only slightly less than 2ṽ2 , i.e., also close
to a parametric resonance.

4.2 Additional Observations. Additional interesting obser-
vations were made which are not predicted by the theoret
analysis. Often it appeared as if the fast excitation not only
creased the natural frequencies, but alsodecreasedthe effective
damping considerably. This appeared in the experiments as a
nificant increase in the time of decay for first mode vibrations
Fig. 3 The first natural frequency ṽ1 versus the intensity of excitation P for in-
creasing values of the static axial force N
Transactions of the ASME
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Fig. 4 The second natural frequency ṽ2 versus the intensity of excitation P for
increasing values of the static axial force N
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More interestingly, it was noted that for excitation of very hig
intensity, we observed overdamped response of the first mod
the beam was forced away from its trivial equilibrium positio
and then released, it would immediately snap back to the tri
position, instead of performing damped oscillations in the fi
mode.

5 Conclusion
We have attempted to validate a specific non-trivial effect

applying fast harmonic excitation along the undeformed axis o
hinged-hinged beam. This effect appears as an apparent chan
natural frequency, or equivalently, in beam stiffness and buck
load.

A simple analytical expression has been presented that re
effective beam natural frequencies to excitation intensity. Acco
ing to this expression natural frequencies increase with excita
intensity ~5force/frequency!, almost linearly for higher levels o
intensity.

Experiments performed with a laboratory beam showed that
measured natural frequencies~lowest two! generally do increase
with excitation intensity. For some measurement sets the fu
tional relationship between frequency and intensity is quite cl
to the one predicted theoretically. For other sets there are
nounced discrepancies. We believe the discrepancies can b
plained by nonlinear interaction~in between beam vibration
modes and between the beam and other parts of the setup!, by
mechanical clearances, and by the frequency of the available
citation source not being sufficiently high.

The experimental setup might be further improved on th
factors, so as to match the theoretical beam model more clo
Or the theoretical model could be elaborated to include non
earities and the possibility of modal interaction. However, we fi
that the evidence given in this study is sufficient to conclude t
~a! fast harmonic excitation can change the effective natural
quencies of a real physical beam;~b! for low levels of excitation
chanics
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the change is negligible, whereas for higher levels the nat
frequencies grows almost linearly with the intensity of excitatio
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A Variational Boundary Integral
Method for the Analysis of
Three-Dimensional Cracks of
Arbitrary Geometry in Anisotropic
Elastic Solids
A variational boundary integral method is developed for the analysis of three-dimens
cracks of arbitrary geometry in general anisotropic elastic solids. The crack is mod
as a continuous distribution of dislocation loops. The elastic energy of the solid is
tained from the known expression of the interaction energy of a pair of dislocation lo
The crack-opening displacements, which are related to the geometry of loops and
Burgers vectors, are then determined by minimizing the corresponding potential ene
the solid. In contrast to previous methods, this approach results in the symmetric s
of equations with milder singularities of the type 1/R, which facilitate their numer
treatment. By employing six-noded triangular elements and displacing midside nod
quarter-point positions, the opening profile near the front is endowed with the accu
asymptotic behavior. This enables the direct computation of stress intensity factors
the opening displacements. The performance of the method is assessed by the ana
an elliptical crack in the transversely isotropic solid. It also illustrates that the conv
tional average schemes of elastic constants furnish quite inaccurate results whe
material is significantly anisotropic.@S0021-8936~00!02702-1#
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1 Introduction
Three-dimensional cracks have been studied extensively

cause of their importance in many engineering and scientific
plications. To name a few, these applications, ranging fr
atomic to geological scale, include the analysis of dislocat
nucleation from the crack tip and brittle to ductile transition
cleavage fracture@1#, toughening mechanisms of particle an
fiber-reinforced composites@2–4#, hydraulic fracturing simulation
@5#, and earthquake modeling@6,7#. In most of the previous analy
ses of the three-dimensional crack, the problems are reduce
the solutions of integral equations defined on the faces of
crack. Most of these methods are restricted to planar crack p
lems ~@8–10,2–4#!. Some of these methods use the Somiglia
identity as the means of effecting the reduction to the bound
which results in highly singular integral equations of difficult n
merical treatment~@11,12#!. To overcome these geometric restri
tions and numerical difficulties, Xu and Ortiz@13# have developed
a variational boundary integral method for the analysis of cra
of arbitrary three-dimensional geometry in isotropic elastic soli
By representing the opening displacement of the crack as a
tinuous distribution of dislocation loops, they obtained the ela
strain energy of the deformed crack from the known expressio
the interaction energy of a pair of dislocation loops. The geome
of the loops and their Burgers vectors are readily related to
crack-opening displacements, which are then determined by m
mizing the total potential energy of the solid. Because of
variational basis of the method, the resulting system of equat
is symmetric. In addition, the distributed dislocation represen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
22, 1999; final revision, Nov. 26, 1999. Associate Technical Editor: M. Ortiz. D
cussion on the paper should be addressed to the Technical Editor, Professor Le
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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tion gives rise to the integral equations with milder singularity
the type 1/R. These features facilitate the numerical treatment
the integral equations. In their numerical analysis, they emplo
six-noded triangular elements and displaced midside node
quarter-point positions to ensure the accurate asymptotic beha
of the opening profile near the front. This enables the direct ac
rate computation of stress intensity factors from the opening
placements.

In this paper, we extend the integral equation developed by
and Ortiz@13# to the case that three-dimensional cracks with
bitrary geometry are in general anisotropic elastic solids. Us
the same technique described in their work, this can be achie
by using the known expression for the interaction energy of a p
of dislocation loops in anisotropic elastic solids~@14#!. Since the
similar approach is implemented, the integral equation shares
same characteristic of the one for the isotropic case.

Modeling of cracks with dislocation segments has received c
siderable attention in the past~e.g., @15,16,5#!. The technique
implemented in this paper, although differing in using dislocati
loops which appear to be more direct, is an extension of
approach to three dimensions. It is noteworthy that this techni
can be applied directly to any type of the surface with displa
ment discontinuity. This proves to be of particular advantage
the analysis of dislocation nucleation from the crack tip becaus
enables the uniform numerical treatment of both the crack and
dislocation profile on the slip plane~@16,1#!.

2 Integral Equation Formulation
In this section, we follow the approach developed by Xu a

Ortiz @13# to obtain the integral equation for an arbitrary thre
dimensional crack in a general anisotropic elastic solid. The e
tic constants for the solid are denoted byci jkl . Due to the sym-
metry and existence of elastic strain energy, there are at mos
distinct elastic constants. Let the surface of the crack beS and
crack front beC. Defineu~x!, xPS, the displacement jump acros
S, with componentsui relative to a Cartesian basisei . Our first
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aim is to compute the elastic strain energy of the cracked so
This is accomplished by representing the opening displacem
as a continuous distribution of dislocation loops, and subseque
using known expressions for dislocation loop interaction energ

The dislocation distribution equivalent tou~x! is determined as
follows. For i 51,2,3, letCiK i

be the level contours onS corre-
sponding to values ofui5KiDui ~no sum!, Ki50,1,2, . . .Ni .
This defines three sets of level contours inscribed on the c
surface~Fig. 1!. Sinceui50 at the crack frontC, it follows that
Ci05C. We begin by replacing the original opening displacem
field by one consisting of discrete steps of magnitudeDui across
the level contoursCiK i

. Evidently, the stepwise opening displac
ment field so defined approachesu~x! as Dui→0. Each contour
CiK i

may be viewed as carrying a dislocation of Burgers vect

bi5Duiei ~no sum on i !. (1)

By definition, the Burgers vector for the loopCiK i
points in the

ith coordinate direction and has a constant magnitude equa
Dui . The elastic interaction energy between two dislocation lo
C1 andC2 of Burgers vectorsb1 andb2 in an infinite anisotropic
elastic solid is~@14#! ~see Fig. 2!

W125
1

8p2 R
C1

R
C2

1

R E
0

2p

b1

•@~dl13z,dl23z!2~dl13z,z!•~z,z!21
•~z,dl23z!#•b2df

(2)

wheredl1 and dl2 are vectors of infinitesimal length, tangent
C1 and C2 , respectively,R is the length of the relative position
vector betweenC1 andC2 , z andz0 are unit vectors perpendicula
to R, andf is the angle betweenz and arbitrary chosen referenc
z0 . Let a andb be two vectors,~a,b! denotes a second-rank tens
with elements

~a,b! jk5aici jkl bl . (3)

Invoking the principle of superposition, the elastic strain energy
the cracked solid follows as

Fig. 1 Distributed dislocation loop representation of opening
displacement field

Fig. 2 Two interacting dislocation loops
404 Õ Vol. 67, JUNE 2000
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3

(
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3

(
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(
K j 50

Nj F 1

8p2 R
CiK i

R
CjK j

1

R

3E
0

2p

bi•@~dl iK i
3z,dl jK j

3z!

2~dl iK i
3z,z!•~z,z!21

•~dl jK j
3z,z!#•bjdfG . (4)

The factor 1/2 in this expression compensates for the fact that
double sum accounts for the interaction energy between each
of loops twice. The computation of the elastic strain energy
completed by passing to the limit ofDui→0. To this end, letm be
a unit surface vector~i. e., a unit vector tangent toS! normal to
CiK i

. SinceCiK i
is a level contour ofui , it follows that

m5¹ui /u¹ui u. (5)

Let t measure the distance from the loop alongm, andDt be the
distance alongm between the consecutive loopsCiK i

andCi (Ki11)

shown in Fig. 1. The derivative ofui with respect tot follows as

dui

dt
5¹ui•m5u¹ui u (6)

where use has been made of identity~5!. Hence, for smallDui ,
one has

Dui'u¹ui uDt (7)

and the Burgers vectors~1! become

bi'u¹ui uDtei . (8)

Furthermore, the line element along a contour may be expre
as

dl5dsn3m5dsn3¹ui /u¹ui u (9)

whereds is the element of are length, andn is the unit normal
vector to the surface. Substituting~8! and~9! into ~4!, and noting
that in the limit of Dui→0, Dtds may be identified with the
element of surface areadS, one finds

W@u#5
1

16p2 E
S
E

S

1

R E
0

2p

ei•@~n3¹ui !13z,~n3¹uj !23z!

2~~n3¹ui !13z,z!•~z,z!21
•~z,~n3¹uj !23z!]

•ejdfdS1dS2 (10)

where (•)1 and (•)2 denote two different points onS, and R is
then the distance between these two points. Equation~10! is the
sought expression for the strain energy of the cracked solid
takes the form of a double integral over the crack surfaceS. An
advantage of the present formulation which is immediately app
ent from ~10! is that the kernels of all integrals have milder si
gularities of the type 1/R. Their accurate numerical treatmen
were given by Xu and Ortiz@13#.

The potential energy of the solid follows as the sum of t
strain energy~10! and the potential energy of the applied load
Without loss of generality, we shall confine our attention to t
case in which tractiont is applied directly to the faces of th
crack. Then, the potential energy of the solid is

P@u#5W@u#2E
S
t•udS. (11)

For given traction, the opening displacements of the crack can
obtained by minimizing the potential energyP. The distribution
of stress intensity factors over the crack frontC can then be ex-
tracted from the known opening displacements. As is evident fr
~11!, P defines a positive definite quadratic form inu. Conse-
quently, Rayleigh-Ritz methods of approximation based on
Transactions of the ASME
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the
constrained minimization ofP over a finite dimensional interpo
lation space result in symmetric systems of equations. One s
method based on a finite element discretization of the crack
face refers to Xu and Ortiz@13# in which the treatment of singu
larity along the crack front, the singular integration, the calcu
tion of stress intensity factors, and the treatment of the perio
semi-infinite cracks are addressed in detail. As a final remark,
not necessary to recast~10! in terms of the surface coordinates
previously indicated by Xu and Ortiz@13#. The use of flat six-
noded triangular elements to represent the curved crack su
enables the simple linear transform of the local and global v
ables between two Cartesian coordinates.

3 Numerical Examples for Elliptical Cracks in Trans-
versely Isotropic Solids

An elliptical crack in the unbounded transversely isotropic so
is selected to demonstrate the performance of the method.
configuration is selected because the numerical results ca
compared to the exact analytical solutions. The elliptical crac
assumed to be situated in the plane perpendicular to the ax
elastic symmetry of a transversely isotropic elastic solid. W
reference to a system of rectangular Cartesian coordin
(x,y,z), the crack bounded byx2/a21y2/b251 is placed in the
xy-plane such that the origin coincides with the center of
ellipse having major and minor semi-axesa and b in the ratio
k85b/a. Points on the crack front can be parameterized by
polar angleu as x15a cosu and x25b sinu ~see Fig. 3!. The
crack is assumed to be under mode I remote loadings. The elastic
constants in contracted notation for two transversely isotro
solid zinc and barium titanate are listed in Table 1~@18#!.

The solutions of the above elliptical crack in transversely i
tropic materials are equivalent to the solutions of the same c
in isotropic materials if the appropriate isotropic elastic consta
are selected~@18#!. The nonzero opening displacement compon
u3 is given by

u35
2Asb

E~k!
A12

x2

a22
y2

b2 (12)

where

A5RH c11~c131c44!~n1
1/21n2

1/2!

c44~c131c11n1!~c131c11n1!J (13)

andn1 andn2 are the roots of the quadratic inn

c11c44n
21@c13~c1312c44!2c11c33#n1c33c4450. (14)

Fig. 3 An elliptical crack under mode I loading

Table 1 Elastic constants of some transversely isotropic ma-
terials „106 psi …

Material c11 c12 c13 c33 c44

Zinc 16.09 3.35 5.01 6.10 3.83
Barium titanate 16.80 7.80 7.10 18.90 5.64
Journal of Applied Mechanics
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For an isotropic material with the shear modulusm and Poisson’s
ratio n,

A5
12n

m
. (15)

The mode I stress intensity factor along the crack front is given

KI5
sApb

E~k!
~sin2 u1k82 cos2 u!1/4 (16)

wherek2512k82 and

K~k!5E
0

p/2 df

A12k2 sin2 f
, E~k!5E

0

p/2

A12k2 sin2 fdf

(17)

are the elliptic integrals of the first and second kinds, respectiv
The mesh of a circular crack used in the analysis is depicte

Fig. 4. The mesh for the elliptical crack is transformed from t
mesh of the circular crack. The circumferential mesh lines div
the range of the functionAa22r 2 into equal intervals. An addi-
tional inner circle is added in the middle for the aesthetic me
Then, the innermost circumferential mesh line is divided in
eight segments, the next circumferential mesh line into 16 s
ments, and so on. This defines the positions of the corner node
the elements. The mesh is then constructed by Delaunay tria
lation, and the midside nodes are added subsequently.

The computed opening profiles for the elliptical cracks in zi
and barium titanate are shown in Figs. 5 and 6 against the e
solutions. The openings are normalized byu054Asb/p, which
is the center opening of the penny-shaped crack with radiub.
Several other approximated solutions are also plotted in the
ures. The Voigt solution represents the solution of the crack in
isotropic solid with the shear modulusm and Lame´ constantl
obtained by Voigt averages~@19#!, i.e.,

m5
1

30
~3ci j i j 2cii j j !, l5

1

30
~2cii j j 2ci j i j !. (18)

The Reuss solution represents the solution of the crack in an
tropic solid with the Young’s modulusE and Poisson’s ration
obtained by Reuss averages~@19#!, i.e.,

1

E
5

1

15
~2si j i j 1sii j j !,

n

E
5

1

15
~si j i j 22sii j j !, (19)

wheresi jkl are the compliance constants. The anisotropic solut
represents the solution of the crack in an isotropic solid with
Young’s modulusE and Poisson’s ration being approximated as

1

E
5s3333,

n

E
52s1133. (20)

Fig. 4 Example of mesh used in the analysis
JUNE 2000, Vol. 67 Õ 405



Fig. 5 Opening displacements along x -axes of elliptical
cracks in zinc
406 Õ Vol. 67, JUNE 2000
Fig. 6 Opening displacements along x -axes of elliptical
cracks in barium titanate
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These approximate solutions are commonly used in many
gineering applications where general anisotropic materials are
eraged as isotropic materials. As shown in the figures, these s
tions are quite inaccurate when the material is significan
anisotropic such as the material zinc. The large error in the
placement particularly complicates the application such as
draulic fracturing simulation where accurate computation of fr
ture openings is critical for predicting the fluid flow between cra
surfaces~@5#!.

A primary interest in the analysis of cracks in elastic solids
the distribution of stress intensity factors along the crack fro
The accurate calculation of these quantities is of critical imp
tance for predicting the path of a growing crack. For a thr
dimensional crack of arbitrary geometry, the stress intensity
tors can be defined with reference to a local Cartesian frame
that thex12x3 plane is tangent to the crack surface, with t
x3-axis tangent to the crack front, as shown in Fig. 7.

The asymptotic solutions in anisotropic solids used here
obtained by taking the limit of the solution of a slit crack b
Barnett and Asaro@16#. With the three stress intensity factorsKi
( i 51,2,3) defined as

s i2ux1→0,x2505
Ki

A2px
1nonsingular terms, (21)

the opening displacementsui are given by

ui54Bi j
21K jA2x1

2p
. (22)

HereB is a 333 matrix that depends only on the direction of th
crack front. For isotropic solids,B is in pure diagonal form with

Fig. 7 Local reference frame for the calculation of stress in-
tensity factors in anisotropic materials

Fig. 8 Variation of K I along the elliptical crack in zinc
Journal of Applied Mechanics
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For anisotropic solids,B can be readily solved through the inte
gral

B52
1

2p E
0

2p

@~s,t !~ t,t !21~ t,s!2~s,s!#df (24)

wheres and t are unit vectors normal to the crack front and ea
other as shown in Fig. 7.B is integrated by rotatings and t
simultaneously by 2p.

Figures 8 and 9 compare the analytical and computed st
intensity factors for the cracks of aspect ratiosa/b51, 2, and 3.
Stress intensity factors are normalized byK05(2/p)Apbs,
which is the stress intensity factor for the penny-shaped cr
with radiusb. In general, the calculation results in accurate str
intensity factors for predicting the crack growth. Somewhat be
results can be obtained when the regular~such as isosceles an
equilateral! triangular elements are placed along the crack fr
~@13#!.

4 Summary and Conclusion
A variational boundary integral method is developed for t

analysis of three-dimensional cracks of arbitrary geometry in g
eral anisotropic elastic solids. Using the technique develope
the earlier work of Xu and Ortiz@13#, the deformed crack is
modeled as a continuous distribution of dislocation loops. T
elastic strain energy of the deformed crack is obtained from
interaction energy of a pair of dislocation loops. The geometry
the loops and their Burgers vectors are readily related to
crack-opening displacements, which are then determined by m
mizing the potential energy of the solid. Because of the variatio
basis of the method, the resulting system of equations is symm
ric. In addition, the distributed dislocation loop representat
gives rise to the integral equations with milder singularity of t
type 1/R. These features facilitate the numerical treatment of
integral equation comparing to previous numerical methods.
employing six-noded triangular elements and displacing mids
nodes to quarter-point positions, the opening profile near the f
is endowed with the accurate asymptotic behavior. This ena
the direct accurate computation of stress intensity factors from
opening displacements. The selected numerical examples of e
tical cracks in anisotropic materials demonstrate that accu
opening displacements and stress intensity factors can be obta

Fig. 9 Variation of K I along the elliptical crack in barium
titanate
JUNE 2000, Vol. 67 Õ 407
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with practical meshes. The results also illustrate that several
ventional average schemes of elastic constants result in quit
accurate opening displacements in the case when the mater
significantly anisotropic.
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Strength Analysis of Spherical
Indentation of Piezoelectric
Materials
The present paper deals with theoretical and computational analysis of quasi-static,
mal indentation of a transversely isotropic, linear elastic, piezoelectric half-space
rigid spherical indenter. The contact is axisymmetric, nonconforming, monotonically
vancing with load, frictionless and adhesionless. The indenter was modeled eith
perfect conductor or as perfect insulator. The mechanical and electrical fields below
surface were examined. The issues of mechanical and dielectric strength due to in
tion were examined using Weibull statistics of surface imperfections. The particular c
of PZT-4, PZT-5A,BaTiO3, and~Ba0.917Ca0.083!TiO3 indented by rigid punches havin
either zero electrical potential or zero electric charge were solved with finite elem
analysis.@S0021-8936~00!02502-2#
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Introduction
Piezoelectric materials have been investigated extensively f

the atomic and continuum point of view by many investigato
The early history and treatment of piezoelectric crystals can
found in the classic work of Cady@1#. Other well-known treaties
of piezoelectricity can be found in the books of Manson@2# and
Tiersten@3# and most recently in Jaffe et al.@4# and Uchino@5#.
From the mechanics point of view, the general formulation
piezoelectricity was developed by Toupin@6# and later by Mindlin
@7#. Important general theorems on piezoelectricity were given
Nowacki @8#.

Many natural inorganic materials, such as ice, granite, bo
teeth, coral, etc., are piezoelectric. Single and polycrystal
ferroelectric ceramics is another class of piezoelectrics. In re
years, new piezoelectric materials in the form of composites h
been developed, Newnham et al.@9#. Such composites are mad
by ferroelectric ceramics like PZT in the form of particles
different shapes~e.g., spheres, hollow spheres, fibers, and tub!
which are dispersed in polymer matrices which have low diel
tric constants. Other composites use a piezoelectric ceramic
eton, backfilled with a polymer. Certain polymers can also
piezoelectric, having the advantage of softness which facilita
their formation into various shapes.

Piezoelectric materials show linearity between component
stress and strain, as well as between electric field and ele
displacements, only over limited ranges of mechanical or elec
cal applied fields. The limits of linear behavior depend on
coercive field used to polarize the material and on the mate
composition. High temperature, mechanical and electrical app
fields tend to fracture and/or depolarize piezoelectric materi
Large-scale commercialization of piezoelectric materials has
duced problems of reliability and durability@5#. Most piezoelec-
tric actuators, ultrasonic motors, and other piezoelectric com
nents require shapes in the form of thin films, beams, and pl
with sizes that are becoming ever smaller. There is a need
systematic analyses on composition dependence of mecha
properties such as strength, creep, depoling, humidity, elect
delamination, and displacement drift. Lack of easy and inexp

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
21, 1999; final revision, Oct. 13, 1999. Associate Technical Editor: M.-J. Pind
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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sive means of reproducibility and quality control of mas
produced piezoelectric components add largely to their produc
cost.

In this work, indentation of piezoelectric materials by an a
symmetric spherical indenter is proposed as a test for asses
their mechanical and dielectric strength or to examine pre-exis
critical microcrack distributions at their surface. In particular, t
indentation induced stresses and electric fields were investiga
The indenter was modeled as a rigid insulating or conduct
sphere. The mechanical and electrical fields at the surface w
used to model indentation induced mechanical and dielec
strength using Weibull statistics.

1 Field Equations of Axisymmetric Indentation
The analysis concerns materials with transverse isotropy, wh

is typically the case of many piezoelectric polycrystalline cera
ics and ceramic composites. The general problem is formulate
cylindrical coordinates (r ,u,z), taking Oz as the vertical axis to
the surface (z50) which is also the axis of transverse isotrop
~hexagonal material symmetry! and the polarization axis~Fig. 1!.
The substrate is taken semi-infinite,z>0, with u being the angular
position. In the following, subscript 3 refers to theOz-axis and 1
and 2~collectively noted as radial,r-axis! refer to arbitrary chosen
orthogonal axes in the plane normal to the poling direction.1 The
shear strain in the plane 12, perpendicular to the polar axis is
excited piezoelectrically. The planar isotropy of poled materi
along thez-axis means that an electric field parallel to the poli
axis interacts in the same way with the axial stress along
radial direction, whereas an electric field parallel to any rad
direction interacts in the same way with a shear stress,s rz , in the
correspondingrz-plane. The present analysis is considered with
the theory of small strains and small electric displacements, wh
is justified in the context of shallow elastic indentations. Isoth
mal conditions are implied for the material constants, their dev
tions from the adiabatic counterparts are expected to be s
~which is true for piezoelectric ceramics~@4#!!.

In the absence of body and inertia forces, the stress equilibr
equations are

]s rr /]r 1]s rz /]z1~s rr 2suu!/r 50,

]s rz /]r 1]szz/]z1s rz /r 50. (1)y
ra.

essor
on,
li- 1The poling direction is the direction of the applied electric field that polariz
permanently the initially unpoled material.
000 by ASME JUNE 2000, Vol. 67 Õ 409
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In the absence of volume electric charges, the Maxwell elec
static equation is

]Dr /]r 1Dr /r 1]Dz /]z50. (2)

The small strain-displacement geometric relations give
strains in terms of the displacement vector (ur ,uz)

e rr 5]ur /]r , euu5ur /r , ezz5]uz /]z,

g rz5]ur /]z1]uz /]r . (3)

The electric flux vector (Er ,Ez) is given in terms of the electric
potentialf by the Gauss equations:

Er52]f/]r , Ez52]f/]z. (4)

In the absence of thermal strains, the constitutive equation
linear piezoelectricity are

s rr 5c11e rr 1c12euu1c13ezz2e31Ez ,

suu5c12e rr 1c11euu1c13ezz2e31Ez ,

szz5c13~e rr 1euu!1c33ezz2e33Ez , s rz5c44g rz2e15Er ,
(5)

where c11,c12,c13,c33,c44 are the elastic constants at consta
electric flux ande15,e31,e33 are the piezoelectric constants at co
stant stress. Initial stresses can be superposed within the co
of linear elastic response.

The electric displacements (Dr ,Dz) contain the coupling be-
tween strains and electric fluxes according to

Dr5e15g rz1e11Er , Dz5e31~e rr 1euu!1e33ezz1e33Ez ,
(6)

wheree11,e33 are the dielectric constants at constant strain.
Substituting Eqs.~3!–~6! into Eqs.~1!–~2!, the problem is re-

duced to a system of three partial differential equations with
knowns the principal quantities (ur ,uz ,f).

2 Problem Formulation and General Solution

2.1 Mechanical Boundary Conditions. A rigid, friction-
less punch is indenting normally the piezoelectric half-space by
applied normal load,P ~Fig. 1!. The contact is nonconformal an
is assumed to be monotonically advancing with load. Ifh is the
penetration depth measured from the initially flat surface, th
dP/dh.0 for h.0. As a result, the contact surface is a circu
disk of radiusa which expands with loading,da/dh.0 for h
.0. Small strain analysis is adequate for small levels of inden
tion, which implies large diameter of the spherical indenter,D,
compared to the contact radius,a,0.2D.

The principal quantities (ur ,uz ,f) are required to have con
tinuous second derivatives with respect to the coordinates~r, z!
and the following regularity condition at infinity:

Fig. 1 Schematic of the normal indentation of piezoelectric
materials by a rigid spherical indenter
410 Õ Vol. 67, JUNE 2000
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~ur ,uzf!→o~1/Az21r 2!, Az21r 2→`. (7)

Inside the contact area, the mechanical boundary conditions m
satisfy the applied normal displacement due to the rigid, frictio
less, and adhesionless spherical punch profile. A spherica
denter of diameterD, wherea/D,0.2, can be approximated by
paraboloid of revolution, therefore,

uz~r ,0!5h2r 2/D; 0<r ,a. (8)

In all cases

s rz~r ,0!50; r>0, (9)

szz~r ,0!50; r .a. (10)

Equation~9! indicates absence of frictional or other applied she
tractions and Eq.~10! means zero normal tractions outside t
contact region. Assuming smooth deformation transition at
contact perimeter (r 5a), the continuity condition requires
duz(r 5a2,z50)/dr5duz(r 5a1,z50)/dr.

2.2 Electrical Boundary Conditions. The electrical bound-
ary conditions depend on the conductivity of the punch. The f
lowing electrical boundary conditions reduce the general prob
to two well-posed mixed boundary value problems which ha
unique solutions@10#.

For the case of the indenter being a perfect electrical condu
with constant potentialf0 ,

f~r ,0!5f0 ; 0<r ,a, (11)

Dz~r ,0!50; r .a. (12)

Equation~11! indicates that the potential of the sphere will be t
same as that of the indented material at the contact area, whe
Eq. ~12! shows that the indentation-induced electric charge dis
bution outside the contact area will be zero.

For the case of the indenter being a perfect insulator with z
electric charge distribution,

Dz~r ,0!50; r>0. (13)

Equation ~13! indicates that the indentation-induced elect
charge distribution of the entire surface will be zero.2

2.3 General Features of the Solution. Hankel transforma-
tion with respect to the radial directionr, (ur ,uz ,f)
→(ūr(j,z),ūz(j,z),f̄(j,z)), is used to transform the governin
partial differential to a homogeneous system of ordinary differ
tial equations with respect toz @11#. Hence, a general exponentia
form, e2kjz, of the solution for the transformed principal variable
is examined~j is the radial coordinate in the transformed spac!.
The parameterk must satisfy the characteristic (333) determi-
nant of the system of ordinary differential equations

det@ai j #50. (14)

The same equations were derived by Ding et al.@12# using poten-
tial theory. The characteristic Eq.~14! is of sixth order and has
two real roots,k56k1 and four complex rootsk56(d6 iv) ( i
5A21), where it is assumed that all roots are distinct~without
loss of generality,k1 ,d are taken positive definite andv non-
negative!. In order to satisfy regularity, selectk5k1 as the real
root and thenk1 , d, v can be found from Eq.~14! @13#,

a115c44k
22c11, a1252a215~c131c44!k, a225c33k

22c44,

a135a315~e311e15!k, 2a235a3252e33k
21e15,

2It should be pointed out that Eqs.~12! and ~13! indicate the contact-induced
additional electric charge distribution of a piezoelectric. The surface of the pie
electric is charged in its polarized state, however, this charge is ‘‘bounded’’ thro
the electric dipoles that are created in the material. In the present work, the pro
formulation is such that the initial electric state does not enter the problem explic
but implicitly through the elastic, dielectric, and piezoelectric constants. Other
proaches consider the poling explicitly, however, they lead to very cumbers
analysis.
Transactions of the ASME
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Evaluating the coefficientsai j for k5k1 , the parametersa1 ,
b1 , andg1 are defined as

a15a12a232a13a22, b152a11a232a12a13,

g15a11a221a12
2 . (16)

The additional constantsa21, . . . ,g22 can be defined fromd and
v, using the complex identities~the parenthesis indicates evalu
tion of Eqs.~16! at k5d1 iv!:

a211 ia225a1~d1 iv!, b211 ib225b1~d1 iv!,

g211 ig225g1~d1 iv!. (17)

Inverting the Hankel transforms, the solution at the surfacez
50) can be represented in a general form as

uz~r ,0!5E
0

`

~M1A1~j!1M2A2~j!!J0~jr !dj, (18)

szz~r ,0!5E
0

`

~M5A1~j!1M6A2~j!!jJ0~jr !dj, (19)

f~r ,0!5E
0

`

~M3A1~j!1M4A2~j!!J0~jr !dj, (20)

Dz~r ,0!5E
0

`

~M7A1~j!1M8A2~j!!jJ0~jr !dj, (21)

where the constantsMi are defined in the Appendix andJ0 , J1 are
Bessel functions of zeroth and first-order, respectively. The s
tion at infinity (Az21r 2→`) tends asymptotically to the poin
force and point charge results. Equation~9! eliminates theA3(j)
function. The remaining unknown functionsA1(j), A2(j) can be
found from the remaining surface electrical and mechan
boundary conditions.

At the surface (z50), Eq.~5d! givesg rz5e15Er /c44, indicat-
ing that the shear strain at the surface is not zero, although
shear stress is. It is clear that all mechanical and electrical c
stants affect the problem because they interact through the c
acteristic Eq.~14! in a very complex way. For the uncouple
problem (ei j 50), the classic mechanical spherical indentati
@14# and the rigid dielectric electrostatic results@15# of a trans-
versely isotropic material are recovered separately. Note tha
macroscopic response is independent ofc12.

3 Conducting Sphere
Equations~8!–~12! can be cast as a system of two dual integ

equations, for the interior problem (0<r ,a) and for the exterior
problem (r .a). The solution follows from Sneddon@15# and is
unique according to Walton@16#.

Using the continuity contact conditionduz(a,0)/dr522a/D,
the relation between the penetration depthh and the contact radius
a is h52a2/D. Other continuity conditions, e.g.,szz(a,0)50 or
Dz(a,0)50, are possible but could lead to jumps in the slope
the surface deformation at the contact perimeter and will not
addressed further in this work.

The surface vertical displacement outside the contact arer
>a) is

uz~r ,0!5~h/p!~~22~r 2/a2!!arcsin~a/r !1~r /a!A12~a2/r 2!!.
(22)

The radial displacement at the surface inside the contact
(0<r<a) is
Journal of Applied Mechanics
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ur~r ,0!52
8

9prD

M9M42M10M3

M1M42M2M3
@a32~a22r 2!3/2#

2
8f0

~c112c12!pr

M6M12M2M5

M1M42M2M3
@a2~a22r 2!1/2#,

(23a)

and outside the contact area (r>a) is

ur~r ,0!52
8a3

3prD

M9M42M10M3

M1M42M2M3

2
8f0a

~c112c12!pr

M6M12M2M5

M1M42M2M3
. (23b)

The constantsMi are given in the Appendix. In order to have
nontrivial solution,M1M4ÞM2M3 and M5M8ÞM6M7 , which
are always satisfied for known piezoelectric ceramics. The ab
analytical expressions agree with those derived by Chen and D
@17# who used the potential theory method; the present results
more straightforward and simpler.

4 Insulating Sphere
Equations~8!–~10! and~13! can be cast as a system of two du

integral equations for the interior and the exterior problem.
The continuity contact condition gives the relation between

penetration depthh and the contact radiusa, h52a2/D, which is
exactly as for the uncoupled mechanical indentation. The ana
cal expressions for the contact pressurep(r ), the charge distribu-
tion under the contactq(r ), and the resultant forceP, are given in
a previous work@18#. Of interest are the relations for the surfac
radial displacement and electric potential and were derived in
work.

The radial displacements at the surface are

ur~r ,0!52
8a3

3prD

M9M82M10M7

M1M82M2M7
S 12S 12

r 2

a2D 3/2D ;

0<r<a, (24a)

ur~r ,0!52
8a3

3prD

M9M82M10M7

M1M82M2M7
; r>a. (24b)

At the surface, the electrical potential is

f~r ,0!5
~2a2/D !~M3M82M4M7!

p~M1M82M2M7! S 22
r 2

a2D ; 0<r<a,

(25a)

f~r ,0!5
~2a2/D !~M3M82M4M7!

p~M1M82M2M7!

2

p S S 22
r 2

a2Darcsin
a

r

1
r

a
A12

a2

r 2 D ; r>a. (25b)

The constantsMi are given in the Appendix. In order to have
nontrivial solution,M1M8ÞM2M7 and M5M8ÞM6M7 , which
are always satisfied for known piezoelectric ceramics.

5 Mechanical and Dielectric Strength
When investigating the mechanical and dielectric strength

brittle materials with spherical indenters, it is often the case t
the most critical region is at the surface, close to the con
perimeter~r 5a, z50!. Therefore, it seems important to examin
the stresses and the electric flux in that region. From the boun
conditions and the constitutive relations, it can be shown tha
the surface (z50)

ezz5Ez50 ~ for r>0!, e rr 1euu50 ~ for r .a!, (26)

and therefore forz50, r .a, Eq. ~6! gives
JUNE 2000, Vol. 67 Õ 411
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s rr 52suu5~c112c12!e rr 5~c112c12!]ur /]r . (27)

Using Eq.~23b! for the conducting indenter, the surface rad
stress outside the contact radius (r>a) is found to be

s rr ~r ,0!5
8~c112c12!

pr 2 S M9M42M10M3

M1M42M2M3

a3

3D

1
M6M12M2M5

M1M42M2M3

f0a

c112c12
D , (28)

whereas using Eq.~25b! for the insulating, the surface radial stre
outside the contact radius (r>a) is found to be

s rr ~r ,0!5
8a3~c112c12!

3pDr 2

M9M82M10M7

M1M82M2M7
. (29)

For most piezoelectric materials, the maximum tensile stress
pears at the contact perimeter in the radial direction, maxs1
5srr(a,0).

For the perfect insulating indenter, the radial component of
electric flux at the surface is

Er5
2r

a2

~2a2/D !~M3M82M4M7!

p~M1M82M2M7!
; 0<r<a. (30)

Er5
~2a2/D !~M3M82M4M7!

p~M1M82M2M7!

2

p S 2r

a2 arcsin
a

r
22

Ar 22a2

ar D ;

r>a. (31)

Therefore, for piezoelectric materials indented by a perfect in
lator, the maximum magnitude of electric flux is at the cont
perimeter

maxAEz
21Er

25uEr~a,0!u5
~4a/D !uM3M82M4M7u

puM1M82M2M7u
. (32)

If the piezoelectric constants are zero, thenM350 and M7
50 and the problem decouples to a mechanical indentation an
a rigid dielectric problem of a transversely isotropic half spac

5.1 Statistical Aspects of Mechanical Strength. The me-
chanical strength of piezoelectric materials can be related to
density distribution of the surface microcracks. Spherical inden
tion has been used successfully to assess the distribution o
crocracks on glass surfaces~e.g. Argon@19#!. Such approach can
be justified in the case of piezoelectrics from fracture mecha
analysis and experiments~e.g., see@20#! that indicate the me-
chanical strain energy release rate as the most suitable para
for fracture criterion for non-conducting cracks~this may not be
true for conducting cracks!. Various surface stress combination
can be used in order to examine the statistical aspects of stre
@21#. Since the radial stress,s rr (r ,0)5S, is also the maximum
tensile principal stress at the surface, the simplest stress crite
would involveS alone. If gc(S) is the critical stress distribution
for semi-elliptical cracks per unit surface area, then the probab
of no fracture below loadP in the entire surface outside the co
tact circlea is

Fc~P!5expS 22pE
a~P!

`

r dr E
0

S~r ,P!

gc~S!dS D . (33)

The relation betweena andP is given by Giannakopoulos an
Suresh@18#:

2P5
16a3

3D

M4M52M3M6

M1M42M2M3

14af0

M6M12M2M5

M1M42M2M3
; conducting indenter,

(34)
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2P5
16a3

3D

M8M52M7M6

M1M82M2M7
; insulating indenter. (35)

For the cases of an insulating indenter, or a conducting inde
with zero potential (f050), Eqs.~28!–~29! and~34!–~35! can be
expressed in a more compact form as

S~P!5CcP/r 2 ~r>a!, (36)

whereCc is a constant which depends on the material proper
and the electrical conditions of the indenter. Equation~33! simpli-
fies to @19#

ln Fc~P!52pa2E
0

CcP/a2

gc~S!S CcP

a2S
21DdS. (37)

Assume thatgc can be expanded in simple power functions ofS
@19#,

gc~S!5V1~n121!n1S~n121!1 . . . ~ni>1!, (38)

where Vi and ni are constants that depend on the material,
surface damage condition, and the environment. Then the p
ability of no fracture for loads belowP is

Fc~P!5exp~2pa2~V1~CcP/a2!n11 . . . !!, (39)

which is in the classic form proposed by Weibull@22#, with n1
being Weibull modulus.

The previous analysis assumes zero residual surface stre
However, Pohanka et al.@23,24# showed that tensile interna
stresses due to polarization degrade the strength of BaTiO3 and
PZT-4 piezoelectric ceramics. Pohanka et al. found that mac
ing defects at the surface act as sources of failure. Their result
in accord with the permittivity analysis of Buessem et al.@25#
who found tensile internal stresses in constrained piezoele
grains that undergo cubic-to-tetragonal transformation. Poha
et al. assumed a relation between the microcrack sizec the ap-
plied stressS and the internal stressSR according to linear elastic
fracture mechanics

S1SR'CA /Ac, (40)

whereCA is a constant that depends on the fracture energyGc ,
the elastic modulus,c33 and, weakly, on the crack configuratio
CA'AGcc33. Pohanka et al. found that the internal tensile str
depends on the microcrack sizec and the grain sized. Their
experimental results may be approximated in a simple way as

SR'SR
0Ad/Ac5CR /Ac, (41)

whereSR
0 is the internal stress forc→d. Combining~40! and~41!

S'~CA2CR!Ac, (42)

whereCA.CR , i.e.,AGcc33.SR
0Ad, in the absence of spontane

ous cracking.
The failure probability analysis may be equivalently reform

lated in terms of a critical distribution of microcrack sizes at t
surface, using~42!

gc~c!5V1~n121!n1~CA2CR!~n121!c~12n1!/21 . . . . (43)

Assuming that the essential statistic parameters are the sam
the poled and unpoled specimens and that the first term in~43!
dominates the problem, then the condition for similar probabi
of failure for both poled and unpoled cases gives the follow
relation between the critical indentation loads:

Ppoled/Punpoled5~12~CR /CA!!12~1/n1!Cc
unpoled/Cc

poled. (44)

The previous analysis is simplistic since it ignores the toughn
anisotropy due to microcracking orientation with respect to
poling direction@26#.

5.2 Statistical Aspects of Dielectric Strength. The dielec-
tric strength is the resistance of the material when changing f
Transactions of the ASME
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its dielectric to the conducting state, in the presence of high e
tric flux. Obviously, the dielectric strength of piezoelectric ma
rials can be related to the density distribution of surface imper
tions. However, imperfections in the bulk of the material a
trigger dielectric breakdown~for PZT ceramics, Gerson and Ma
shall @27# reported that dielectric strength reduces logarithmica
with bulk porosity!. In spherical indentation, the induced radi
electric flux at the surfaceEr(r ,0)5E is also the maximum prin-
cipal flux, therefore, the simplest dielectric strength criteri
would involveE alone. Such an assumption implies that dielect
breakdown could start from a surface imperfection. Ifge(E) is the
critical electric flux distribution for such imperfections per un
surface area, then the probability of no dielectric breakdown
low load P in the entire surface is

Fe~P!5expS 22pE
0

`

r dr E
0

E~P!

ge~E!dED . (45)

The electric field intensity factor at the tips of the surface fla
is analogous to the stress intensity factor~see, for example,@20#!.
Thus, pre-existing surface flaws are expected to have a sim
role in both mechanical failure and dielectric breakdown. Inde
Yamashita et al.@28# and Kishimoto et al.@29# found similarity
between the shapes of mechanical and dielectric strength dist
tions for piezoelectric ceramics of small grain size, in both fer
electric and paraelectric state. These experimental results su
that

ge~E!5W1~n121!n1E~n121!1 . . . , (46)

where the Weibull modulusn1 is the same with that ofgc(S), Eq.
~38!, andV1S (n121)'W1E(n121).

5.3 The Case of an Indenter With Nonzero Electric Poten-
tial. The case of the indenter being a perfect conductor curry
nonzero potentialf0 is interesting for the reason that the norm
contact stress and the surface electric charge at the contact
(0<r<a) have square-root radial singularity, as also noted
Chen and Ding@17#

szz~r ,0!5
8

pD

M4M52M3M6

M1M42M2M3
Aa22r 2

1
2

p

M6M12M2M5

M1M42M2M3

f0

Aa22r 2
, (47)

Dz~r ,0!5
8

pD

M7M42M8M3

M1M42M2M3

3Aa22r 2
2

p

M1M82M2M7

M1M42M2M3

f0

Aa22r 2
. (48)

A compressive stress singularity is expected to create
crodamage at the contact perimeter; the electric charge singul
is expected to depole the material at the contact perimeter. T
effects attenuate with decreasing indenter’s diameterD. It is then
expected that due to the local damage, energy will be dissip
and the probability of macroscopic indentation-induced crack
be lowered. High positive electric potential would increase
tensile radial stress at the contact perimeter, Eq.~28!, and there-
fore increase the probability of macroscopic cracking. On
other hand, high negative electric potential could result in low
tensile stresses at the contact perimeter, Eq.~29!, and reduce the
probability of macroscopic cracking.

The electric potential, however, cannot be arbitrarily negati
The stability conditiondP/dh.0 for a.0 anddP/dh50 if a
50 is satisfied if

f0D~M6M12M2M5!14a2~M4M52M3M6!<0, (49)

which also guarantees that the contact stresses are compre
everywhere,szz(r ,0)>0. High negative electric potential ma
Journal of Applied Mechanics
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violate Eq.~49! and result in singular tensile contact stresses at
contact perimeter. This situation is possible, if adhesion betw
the contacting surfaces is also permitted. In the absence of a
sion, the solution that violates~49! is inadmissible and the prob
lem needs to be reformulated.

6 Finite Element Analysis
The ABAQUS@30# general purpose finite element program w

used with certain modifications regarding the electric contact c
ditions. A mesh of four-node axisymmetric elements was us
with progressively varying element size. The final mesh had 4
elements and 5058 nodes~Fig. 2!. Full Gauss integration schem
was used. No special types of elements were used~‘‘singular’’ or
‘‘infinite’’ type of elements that have the spatialr 1/2 or r 21 sin-
gularity of the problem!. The contact radius was resolved with 2
elements. The outer boundary was at least 20a away from the
contact regime. With reference to Fig. 2, the outer boundary c
ditions were vertically constrained along the sides CD and AB
addition, sides CD and AB were given zero electrical potential
all cases, the uncoupled problem (ei j 50) was also solved. The
contact stresses were found to be in agreement within five per
error when compared to analytic results.

Four piezoelectric materials were analyzed, PZT-4, PZT-5
BaTiO3, and 95 percent BaTiO3–5 percent CaTiO3. Their fully
poled, room temperature mechanical, dielectric, and piezoele
properties are shown in Table 1. The data were collected fr
Jaffe et al.@4# and Bechmann@31#. The indenting sphere wa
taken to be rigid and approximated by an axisymmetric parabo
of diameterD, which was kept the same in all cases. For t
coupled cases, the sphere was taken either as a perfect cond
with zero electric potential (f050), or as a perfect insulator with
no surface electric charge distribution (Dz50). A constant aver-
age pressureP/(pa2)533.84 GPa was used in all calculation
~the results for different average pressures scale accordin
Table 2!.

The normalized applied loadP/(D1/2h3/2), maximum principal
tensile stress maxs1, and the average electric charge distributi
0.1875Q(D/a3) are tabulated in Table 2. These are results that
useful for macroscopic observations of the mechanical stren
due to indentation.

The contours of principal tensile stress,s1 , are shown in Fig.
3~a! for the uncoupled case of PZT-4, in Fig. 3~b! for the coupled
case of PZT-4 with conducting sphere and in Fig. 3~c! for the
coupled case of PZT-4 with insulating sphere. The contours
principal tensile stress are shown in Fig. 4~a! for the uncoupled

Fig. 2 Overall view of the finite element mesh used in the
present calculations; details of the mesh close to and away
from the contact area are included
JUNE 2000, Vol. 67 Õ 413
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case of 95 percent BaTiO3–5 percent CaTiO3, in Fig. 4~b! for the
coupled case of 95 percent BaTiO3–5 percent CaTiO3 with con-
ducting sphere and in Fig. 4~c! for the coupled case of 95 perce
BaTiO3–5 percent CaTiO3 with insulating sphere. Comparison o
Figs. 3 and 4 reveals the influence of the strong anisotropy of
poled PZT-4, compared to the less anisotropic 95 perc
BaTiO3–5 percent CaTiO3. In all cases, the maximum tensil
stress appears at the contact perimeter and is in the radial d
tion. However, for the coupled~poled! cases, another strong ten
sile stress region appears below the contact area. The fields
cate that possible cracking locations are at the contact perim
~Hertzian type! and to a lesser extent in the interior, along the a
of loading. In the coupled cases, the cracking, once it occurs
likely to be unstable because, contrary to the uncoupled cases
crack paths will be under strong tensile fields. Moreover,
toughness is weaker for a crack perpendicular to the poling di
tion ~@26#!. The magnitudes of the tensile stresses below the
dentation are not very different for the cases of insulating or c
ducting type of indenter. The maximum tensile stress below
indentation occurs deeper for the conducting type of indenter t
for the insulating type of indenter.

Figure 5~a! shows the magnitude of the electric flux distributio
AEr

21Ez
2, for the coupled case of 95 percent BaTiO3–5 percent

CaTiO3 with conducting sphere and Fig. 5~b! shows the magni-

Table 1 Piezoelectric properties

Elastic
Stiffness
Coefficients
~GPa! PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083!TiO3

C11 139.00 121.00 166.00 158.00
C33 115.00 111.00 162.00 150.00
C44 25.60 21.10 42.90 45.00
C12 77.80 75.40 76.60 69.00
C13 74.30 75.20 77.50 67.50
Piezoelectric
Coefficients
~C/m2!

PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083!TiO3

e31 25.200 25.400 24.400 23.100
e33 15.10 15.80 18.60 13.50
e15 12.70 12.30 11.60 10.90
Dielectric
Constants
(1029 F/m)

PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083!TiO3

e11 6.461 8.107 11.151 8.850
e33 5.620 7.346 12.567 8.054

Table 2 Finite element results for spherical indenter

Material Indenter

P/(D1/2h3/2)
~GPa!

~Theory!
maxs1(pa2)/P

~Theory!

0.1875Q(D/a3)
C/m2

~Theory!

PZT-4 ~uncoupled! 105.14 0.07181 0
~89.5!

conductor 86.16 0.06620 212.6
~84.7! ~0.0578! ~213.1!

insulator 75.06 0.07683 0
~79.6! ~0.0864!

PZT-5A conductor 67.63 - 32.36
insulator 58.95 - 0

95%BaTiO3 ~uncoupled! 121.23 0.10370 0
5%CaTiO3 ~112.6!

conductor 124.03 0.08687 26.11
~123.1! ~0.0432! ~26.35!

insulator 122.78 0.1371 0
BaTiO3 ~uncoupled! 150.69 0.1176 0

~148.9!
conductor 157.28 0.1031 28.32

~153.1! ~28.7!
insulator 157.88 0.1359 0

~154.0!
414 Õ Vol. 67, JUNE 2000
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tude of the electric flux distribution for the coupled case of
percent BaTiO3–5 percent CaTiO3 with insulating sphere. The
maximum magnitude of the electric flux occurs at the cont
perimeter (r 5a) for the insulating type of the indenter and at th
center of the contact area (r 50) for the conducting type of in-

Fig. 3 Maximum tensile principal stress distribution for
spherical indentation of PZT-4; „a… uncoupled case „PÕ„pa2

…

Ä33.84 GPa…, „b… coupled case, with indenter being a perfect
conductor of zero electric potential „PÕ„pa2

…Ä33.84 GPa…, „c…
coupled case, with indenter being a perfect insulator of zero
surface electric charge „PÕ„pa2

…Ä33.84 GPa…
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Fig. 4 Maximum tensile principal stress distribution for
spherical indentation of 95 percent BaTiO 3 – 5 percent CaTiO 3 ;
„a… uncoupled case „PÕ„pa2

…Ä33.84 GPa…, „b… coupled case,
with indenter being a perfect conductor of zero electric poten-
tial „PÕ„pa2

…Ä33.84 GPa… „c… coupled case, with indenter being
a perfect insulator of zero surface electric charge „PÕ„pa2

…

Ä33.84 GPa…
Journal of Applied Mechanics
denter. This indicates that either the contact perimeter or the c
tact center are the most critical regions where contact indu
piezoelectric depoling may first occur. The maximum magnitu
of electric flux is higher for the conducting type of indenter.

It was found earlier that if the critical stress distribution o
microcracks per unit surface area,gc , remains the same for both
the unpoled and the poled material, then the probability of
fracture under spherical indentation depends on the electric c
tact conditions. The present analysis predicts that for PZT-4
probability of no failure at indentation load,P, is higher for the
unpoled material and lower for the poled material indented by
same sphere. Therefore, indentation induced cracking is expe
for the poled PZT-4 material at lower load than the unpoled m
terial. In addition, the probability of no failure is slightly highe
for the indentation of the poled material with an insulating i
denter than with a conducting indenter. Therefore, indentation
duced cracking is expected for the poled PZT-4 material inden
by a conducting indenter at lower load than indented by an in
lating indenter of the same diameter.

Fig. 5 Magnitude of electric flux distribution, AEr
2¿Ez

2, for
spherical indentation of 95 percent BaTiO 3 – 5 percent CaTiO 3
„coupled case …, „a… indented with conducting sphere of zero
electric potential „PÕ„pa2

…Ä33.84 GPa…, „b… indented with non-
conducting sphere of zero surface electric charge „PÕ„pa2

…

Ä33.84 GPa…
JUNE 2000, Vol. 67 Õ 415
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Conclusions
The quasi-static spherical indentation of homogeneous, tr

versely isotropic, linear piezoelectric materials has been exam
analytically and numerically. The surface values of stresses
well as the electrical potential and electric charges, were fo
explicitly. The mechanical and electrical fields below the surfa
were also computed. A Weibull strength analysis was develo
based on critical surface microcrack distributions. The elec
conditions of the indenter were found to be important.

The analysis suggests the potential use of spherical indenta
as a mechanical or dielectric strength test of piezoelectrics
many cases, indentation can be the only method for testing s
volumes of piezoelectric materials existing or processed in sm
volumes like thin films, layered plates, or composites. Indenta
can be used to investigate unwanted time effects like loss of
ezoelectricity due to aging during service or storage. Spher
indentation can model contact-induced damage in tribological
plications like low-velocity impact, scratching, and wear, the
fore providing design methods for protecting piezoelectric s
faces.

Appendix

Constants Used in the Analysis

m152k1e15g12c44~k1a11b1!

m252e15~dg212vg22!2c44~da212va221b21!

m352e15~dg221vg21!2c44~da221va211b22!

B15c13a12k1b1c332k1g1e33,

B45e31a12k1b1e331k1g1e33

B25c13a212c33~db212vb22!2e33~dg212vg22!

B352c13a221c33~db221vb21!1e33~dg221vg21!

B55e31a212e33~db212vb22!1e33~dg212vg22!

B652e31a221e33~db221vb21!2e33~dg221vg21!

M15b12b22m1 /m3 , M25b212b22m2 /m3

M35g12g22m1 /m3 , M45g212g22m2 /m3

M55B11B3m1 /m3 , M65B21B3m2 /m3

M752B42B6m1 /m3 , M85B51B6m2 /m3

M95ua12a22m1 /m3u, M105ua212a22m2 /m3u
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Zener’s Crack and the M-Integral

Z. Suo
Mechanical and Aerospace Engineering, Department a
Materials Institute, Princeton University, Princeton,
NJ 08544

In a pair of bonded solids, the interface may block dislocati
gliding. The pileup may cause a crack to nucleate either on
interface, or in one of the solids. The model, proposed by Ze
half a century ago, has been analyzed in various forms. This n
shows that the energy release rate of the crack can be calcul
by an application of the M-integral. Both solids are anisotrop
and the interface is flat. The result leads to a discussion of
crack orientation.@S0021-8936~00!00701-7#

Introduction
Zener@1# proposed that a dislocation pileup concentrates str

which may cause a crack to nucleate. Any crystallographic
continuity~e.g., a grain boundary or a phase boundary! may act as
an obstacle to block dislocation gliding. In a pair of bonded soli
when the interface blocks dislocations, the crack can nucleat
ther on the interface~Fig. 1~a!!, or in one of the solids~Fig. 1~b,
c!!. The model has been analyzed by many authors in the las
years, as reviewed by Cottrell@2# and more recently by
Cherepanov@3# and Fan@4#. A main result is the energy releas
rate of the crack, which has been obtained by solving elasti
boundary value problems for various special cases. When the
solids have dissimilar elastic properties, only the case where
crack lies on the interface~Fig. 1~a!! has been solved. This not
calculates the energy release rate by using a path-indepen
integral, following the procedure of Freund@5#. He gave severa
examples of cracks in an isotropic and homogeneous solid. H
the two solids are anisotropic and dissimilar. The crack can
either on the interface, or in one of the solids.

Calculation
Consider an elastic solid in a state of plane-strain deformat

Knowles and Sternberg@6# introduced the following integral:

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
21, 1999; final revision, Oct. 12, 1999. Associate Technical Editor: K. Ravi-Chan
Copyright © 2Journal of Applied Mechanics
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The integral is over a closed curveC in the plane. Herexa is the
rectangular coordinate,na the unit normal vector toC, w the
strain energy density,ua the displacement, andta the traction. If
the solid is homogeneous along rays from the coordinate or
and if C encloses no singularity,M50; that is, M is a path-
independent integral. For a pair of dissimilar solids bonded o
flat interface, placing the coordinate origin at any point on t
interface satisfies the homogeneity requirement.

If C does enclose a singularity,M may not vanish. For example
Rice @7# showed that theM-integral over a closed curve around
dislocation equals the pre-logarithmic factor of the dislocation
ergy. Consider a dislocation of the Burgers vectorb lying on the

ly
ar.

Fig. 1 Zener’s model. Dislocations pile up at an obstacle, i.e.,
the interface between two solids. The intense stress causes a
crack to nucleate either on the interface, or in one of the solids.
000 by ASME JUNE 2000, Vol. 67 Õ 417
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interface between a pair of solids~Fig. 2!. Place the coordinate
origin at the dislocation and a curveC around the dislocation. The
M-integral is

M5
1

2p
bTH21b. (2)

HereH is a positive-definite hermitian matrix, and can be calc
lated once the elastic constants of the two solids are given@8#. The
location and the shape of the curveC do not affect the value ofM.
Furthermore,M is unaffected by the presence of an extern
boundary or other singularities in the solids, so long asC encloses
no other singularities than the dislocation. This is understood
making C tightly surround the dislocation, where the singul
stress field due to the dislocation prevails over the stress field
to other sources.

It has been shown that, for a pair of anisotropic solids with
fixed relative orientation, under an in-plane coordinate rotationH
transforms like a second-order tensor@9–11#. Consequently, if the
interface rotates with the coordinate, but the Burgers vectob
remains fixed relative to the solids, the numberbTH21b is invari-
ant, and so is the value ofM.

Figure 3 illustrates a flat interface between a pair of se
infinite solids. The interface blocksN dislocations, each of the
Burgers vectorb. A crack of lengthl lies either on the interface o
in one of the solids. All the dislocations glide into the crack a
blunt one crack tip. The other crack tip advances either on
interface or in one of the solids. We now calculate the ene
release rateG at the advancing crack tip. Place the origin of t
coordinates at the point where the dislocations are blocked.
cause of the path-independence, theM-integral over any curve
enclosing the dislocation-crack complex has the same value.
look at the curveC1 far away from the complex. At a distance fa
from the dislocations,r→`, all the dislocations behave collec
tively like a single superdislocation having the Burgers vectorNb;
the stress field due to the superdislocation decays as 1/r , but the
modification due to the presence of the crack decays as 1r 2.

Fig. 2 A dislocation lies on an interface. An arbitrary curve C
encloses the dislocation.

Fig. 3 A superdislocation on the interface, and a crack either
on the interface or in one of the solids. The M-integral is evalu-
ated over the two closed curves.
418 Õ Vol. 67, JUNE 2000
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Consequently, theM-integral overC1 is the same as that over a
isolated interface dislocation of the Burgers vectorNb. Equation
~2! is applicable onceb is replaced byNb. Next look at the curve
C2 tightly surrounding the dislocation-crack complex. The stre
field near the origin is now less singular than 1/r , so that the small
circle around the origin does not contribute to theM-integral. Nor
do the traction-free crack faces. It can be shown that
M-integral over the small circle around the crack tip away fro
the origin equalslG @5#. Equating theM-integrals evaluated ove
C1 andC2 , one obtains that

G5
N2

2p l
bTH21b. (3)

This is the desired result.

Discussion
For the case where the crack lies on the interface, Fan@4#

solved the elasticity boundary value problem using a comp
variable method, and calculated the energy release rate from
stress field. Equation~3! agrees with his result. Furthermore, th
note demonstrates that the same equation is applicable to a c
inside one of the solids.

Let g1 , g2 , andg i be the surface energy per unit area of so
1, solid 2, and the interface, respectively. When a crack advan
a unit area, the surface energy increases byG, whereG52g1 if
the crack is in solid 1, orG5g11g22g i if the crack is on the
interface. Crack can nucleate if the energy release rate com
sates the surface energy increase,G5G, namely,

N2

2p l
bTH21b5G. (4)

The crack lengthl scales withN2, everything else being fixed. I
is also interesting to predict crack orientation from this mod
The value ofG depends on the crystalline orientation. As point
out above, once the relative orientations of the two solids and
slip plane are fixed, the factorbTH21b is invariant with the rota-
tion of the interface or the crack. Consequently, when the rela
orientations of the two solids and the slip plane are fixed,
crack orientation is entirely selected by the anisotropy inG. Ac-
cording to this model, anisotropy of elastic constants plays no
in selecting the crack orientation.
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Alternative Derivation of Marguerre’s
Displacement Solution in Plane
Isotropic Elasticity

X.-L. Gao1

Department of Aeronautics and Astronautics, Air Force
Institute of Technology, 2950 P Street,
Wright-Patterson Air Force Base, OH 45433-7765

An alternative derivation of Marguerre’s solution for displac
ments in plane isotropic elasticity is provided. It is shown that
present approach, which is based on Green’s theorem and pa
lel to the Airy stress function approach, is straightforward. Als
the current derivation establishes the completeness of the M
guerre solution.@S0021-8936~00!00302-0#

1 Introduction
It is well known that there are two different formulation met

ods in plane isotropic elasticity, one of which is in terms of stre
and the other in terms of displacement The stress formula
method using the Airy stress function has been fully develo
and successfully applied to solve many problems with the fi
kind boundary conditions~see, for example, Muskhelishvili@1#,
Teodorescu@2#, and Gao@3#!. However, limited attention has bee
paid to the displacement formulation method, whose applicatio
always desired for problems with the second or third-kind bou
ary conditions.

The solution for displacements in terms of a biharmonic fu
tion was first derived by Marguerre@4# using an approach bas
cally the same as Galerkin’s three-dimensional reduction met
based on the Helmholtz theorem~see, for example, Little@5#, pp.
90–92!. Marguerre’s approach, as a two-dimensional special
tion of the Galerkin method~see, for example, Barber@6#, pp.
190–191! is concise, but it is not straightforward. Moreover, Ma
guerre’s@4,7# approach appears to start with special forms a
hence involves certain degrees of arbitrariness~Little @5#!. This
leaves the completeness of the Marguerre solution in doubt~and
unaddressed!.

The objective of this note is to provide an alternative derivat
of Marguerre’s solution using a straightforward approach. T
present derivation, which makes use of Green’s theorem and
allels the Airy stress function approach, also establishes the c
pleteness of the Marguerre solution.

2 Derivation
Consider a homogeneous, isotropic elastic body undergoing

finitesimal plane-strain deformations in the usual Cartesian sp
$x1 ,x2 ,x3%. This implies thatu15u1(x1 ,x2), u25u2(x1 ,x2),
u350 and hence «315«325«3350, s315s3250, s33
5s33(x1 ,x2). Then, the governing equations~in a displacement
formulation! include the equilibrium equations~in the absence of
body forces!

]s11

]x1
1

]s12

]x2
50,

]s12

]x1
1

]s22

]x2
50, (1)

the constitutive equations

1Current address: Department of Mechanical Engineering–Engineering Mec
ics, Michigan Technological University, 1400 Townsend Drive, Houghton,
49931-1295.
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MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Aug. 11, 1999; final revision, Nov. 22, 1999. Associate Technical Edito
R. Barber.
Copyright © 2Journal of Applied Mechanics
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s115l~«111«22!12G«11,

s225l~«111«22!12G«22, (2)

s1252G«12,

and the geometrical equations

«115
]u1

]x1
, «225

]u2

]x2
, «125

1

2 S ]u1

]x2
1

]u2

]x1
D . (3)

In Eqs.~1!–~3!, s i j , « i j andui ( i , j P$1,2%) are, respectively, the
in-plane stress, strain and displacement components, andl, G are
Lamé’s constants defined by

l[
En

~11n!~122n!
, G[

E

2~11n!
, (4)

with E and n being Young’s modulus and Poisson’s ratio of th
elastic material, respectively.

In a displacement formulation,u15u1(x1 ,x2) and u2
5u2(x1 ,x2) are regarded as the basic unknowns and are to
determined first. Using Eqs.~2! and ~3! in Eq. ~1! yields the
Navier equations for the plane-strain case in linear elasticity~see,
for example, Chou and Pagano@8#, p. 73!:

~l1G!S ]2u1

]x1
2 1

]2u2

]x1]x2
D 1GS ]2u1

]x1
2 1

]2u1

]x2
2 D 50, (5a)

~l1G!S ]2u1

]x1]x2
1

]2u2

]x2
2 D 1GS ]2u2

]x1
2 1

]2u2

]x2
2 D 50. (5b)

Equations~5a,b! are the basic governing equations for the hom
geneous, isotropic elastic body considered in terms of displa
mentsu1 andu2 . This system of two partial differential equation
can be solved simultaneously, which is the approach used by M
guerre@4,7#. Alternatively, the solution of this system can also
derived by solving one equation first and then enforcing the ot
~see, for example, Gao@9–11#!. The latter approach will be
adopted here to solve Eqs.~5a,b!. For simplicity, it is assumed in
the following derivation that the region occupied by the elas
body in thex1x2-plane is simply connected.

Note that Eq.~5a! may be rewritten as~cf. Wang@12#!

]

]x1
F ~l12G!

]u1

]x1
G5

]

]x2
F2G

]u1

]x2
2~l1G!

]u2

]x1
G . (6)

Then, by an extended version of Green’s theorem~see Appendix!
there exists a functionL(x1 ,x2) such that

~l12G!
]u1

]x1
5

]L

]x2
,

(7)

2FG
]u1

]x2
1~l1G!

]u2

]x1
G5

]L

]x1
.

These two equations can also be written as

]

]x1
@~l12G!u1#5

]L

]x2
, (8a)

]

]x1
@L1~l1G!u2#5

]

]x2
~2Gu1!. (8b)

Again, by the extended Green’s theorem, Eq.~8a! implies that
there is a functionG(x1 ,x2) such that

~l12G!u15
]G

]x2
, (9a)

L5
]G

]x1
, (9b)

and Eq.~8b! implies that there exists a functionV(x1 ,x2) such
that

han-
I
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L1~l1G!u25
]V

]x2
, (10a)

2Gu15
]V

]x1
. (10b)

Now solving Eq.~9a,b! and ~10a,b! for u1 andu2 gives

u15
1

l1G S ]G

]x2
1

]V

]x1
D ,

(11)

u25
1

l1G S ]V

]x2
2

]G

]x1
D .

Next, eliminatingu1 from Eqs.~9a! and ~10b! yields

]

]x1
@~l12G!V#5

]

]x2
~2GG!. (12)

This implies, once again by the extended Green’s theorem,
there exists a functionF(x1 ,x2) such that

~l12G!V5
]F

]x2
, 2GT5

]F

]x1
. (13)

Substituting Eq.~13! into Eq. ~11! results in

u152
1

G~l12G!

]2F

]x1]x2
,

(14)

u25
1

G~l1G! S ]2F

]x1
2 1

G

l12G

]2F

]x2
2 D .

These expressions determine the displacement components s
in terms of F(x1 ,x2). Hence,F(x1 ,x2) may be regarded as
displacement function~potential! ~see, for example, Barber@6#,
pp. 189–197!.

Clearly, since the two expressions in Eq.~14! are derived from
Eq. ~5a! alone, they must be substituted into the other basic g
erning equation, Eq.~5b!, to obtain the defining equation fo
F(x1 ,x2). Substituting Eq.~14! into Eq. ~5b! yields

]4F

]x1
4 12

]4F

]x1
2]x2

2 1
]4F

]x2
4 50. (15)

This biharmonic equation is the basic governing equation to so
for F(x1 ,x2) in the plane-strain case considered. Equation~15!
says that the displacement function,F(x1 ,x2), is a biharmonic
function. This means that the role of the displacement funct
here is similar to that of the Airy stress function in the stand
stress formulation in plane elasticity, which solely defines
stress components and is also a biharmonic function.

To simplify the solution, define

c~x1 ,x2![
1

~l1G!~l12G!
F~x1 ,x2!. (16)

Clearly,c(x1 ,x2) still satisfies Eq.~15! and hence is a biharmoni
function. Then, it follows from Eqs.~14! and ~16! that

u152
l1G

G

]2c

]x1]x2
,

(17)

u25
l12G

G

]2c

]x1
2 1

]2c

]x2
2 .

Using Eq.~4! in Eq. ~17! gives

u152
1

122n

]2c

]x1]x2
,

u25
2~12n!

122n

]2c

]x1
2 1

]2c

]x2
2 (18)
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as the displacement components in the plane-strain case in t
of the new biharmonic functionc(x1 ,x2) defined by Eq.~16!,
with only one material propertyn being involved.

The two expressions given by Eq.~17! are identical to those of
the in-plane displacement components initially derived by M
guerre@4#.

For the plane-stress case, by invoking the formal equivale
between the plane-strain and plane-stress equations in plane
tropic elasticity~see, for example, Chou and Pagano@8#, p. 93! it
immediately follows from Eq.~18!, after replacingn by n/(1
1n), that

u152
11n

12n

]2c

]x1]x2
,

(19)

u25
2

12n

]2c

]x1
2 1

]2c

]x2
2

as the displacements in the case of plane stress. These are e
the expressions of Marguerre’s displacement solution in the pla
stress case derived by Little@5# using Galerkin’s reduction
method. This ends the plane-stress case and hence complete
derivation of Marguerre’s solution for displacements in plane i
tropic elasticity.

Clearly, the derivation presented above has also established
the Marguerre solution is complete~or general! in the sense that
every solution of Eqs.~5a,b! may be represented in the form o
Eq. ~17! ~see, for example, Gurtin@13#! in terms of a biharmonic
~displacement! function. The reason for this is that the prese
approach is based on an extended Green’s theorem~see Appen-
dix!, which provides the necessary and sufficient condition for
existence of the displacement function that defines the displ
ments in the form of Eq.~17!. Therefore, the completeness of th
solution given in Eq.~17! automatically follows~see, for example,
Truesdell@14#!.

As demonstrated, the present approach begins with solving
equilibrium equations and applies Green’s theorem to introduc
displacement function. It is therefore concluded that the curr
approach parallels the Airy stress function approach, which a
starts from the equilibrium equations and uses Green’s theore
establish the existence of Airy’s stress function~see, for example,
Chou and Pagano@8#, p. 114!. This implies that the approach use
here, as an alternative of Marguerre’s@4,7# approach based on th
Helmholtz theorem for vector decomposition, is elementary
nature. Other approaches based on more advanced mathem
theories such as the differential operator theory may also be u
to derive solutions for displacements in plane isotropic elastic
~see, for example, Raack@15# and Lurie and Vasiliev@16#!. The
completeness of Marguerre’s displacement solution discus
above implies, however, that any solution so obtained should h
the form listed in Eq.~17! ~or Eq. ~19!!.

Appendix

An Extended Green’s Theorem

Theorem:Suppose thatP andQ are two functions ofx1 andx2 ,
with P, Q, ]P/]x2 , ]Q/]x1 being continuous and single-valued
any point (x1 ,x2)PR ~a simply connected region!. Then, the nec-
essary and sufficient condition for the existence of a poten
function f (x1 ,x2) satisfying ] f /]x15P and ] f /]x25Q is that
]P/]x25]Q/]x1 .

Proof: Note that under the given conditions Green’s theor
holds, i.e.,

E E
R
S ]Q

]x1
2

]P

]x2
Ddx1dx2[ R

G
Pdx11Qdx2 , (A1)

whereG is the boundary of the simply connected regionR.
By definition, the exact differential off (x1 ,x2) has the form
Transactions of the ASME
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] f

]x1
dx11

] f

]x2
dx25Pdx11Qdx2 . (A2)

Applying Green’s theorem then gives, from Eqs.~A1! and ~A2!,

E E
R
S ]Q

]x1
2

]P

]x2
Ddx1dx2[0. (A3)

From the continuities of]P/]x2 and]Q/]x1 , it immediately fol-
lows that

]Q

]x1
[

]P

]x2
(A4)

at any point (x1 ,x2)PR. This proves the necessity. Next, w
show that Eq.~A4! is also sufficient for the existence off (x1 ,x2).
Again, applying Green’s theorem yields, from Eqs.~A1! and~A4!,

R
G
Pdx11Qdx250, (A5)

which implies thatPdx11Qdx2 is the exact differential of a
smooth function of the argumentsx1 andx2 . Label this function
as f (x1 ,x2). Then, it follows

P~x1 ,x2!dx11Q~x1 ,x2!dx2[d f~x1 ,x2![
] f

]x1
dx11

] f

]x2
dx2 ,

(A6)

which immediately gives] f /]x15P and ] f /]x25Q. This ends
the proof for the sufficiency.

The extended Green’s theorem recorded and proved here
also listed in Chou and Pagano~@8#, p. 114! ~without proof!. It
was mentioned there that the theorem establishes the existen
Airy’s stress function from the two equilibrium equations.
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The Carothers Paradox in the Case
of a Nonclassical Couple

M. Paukshto
Professor, Institute for Mechanical Engineering Problem
RAS, V. O. Bolshoy Prospect 61, Saint
Petersburg 199178, Russia

A. Pitkin
Graduate Student, Department of Mathematics, State
University of Marine Technology, Lotsmanskaya Street
Saint Petersburg 190008, Russia

The Carothers solution for a wedge loaded by a concentra
couple at its vertex is known to be valid for the wedge ang
2a,2a* '257deg only. Moreover, forp,2a,2a* it exists
for antisymmetric loading only. The more realistic model of t
concentrated couple of the arbitrary orientation is examined
the approach of Dundurs-Markenscoff. It is shown that t
Carothers type solution holds for the edge angles 2a,p.
@S0021-8936~00!00402-5#

The Carothers Paradox in the Case of Nonclassical
Moment

The study deals with the state of plane strain in the elas
wedge with free flanks loaded by a concentrated couple at
vertex. It is simulated by two concentrated forces. The model
such a nonrotation-invariant couple was used by Ya. S. Uflya
@1#. He has studied equilibrium of the infinite strip fixed on th
flanks at the action of such couple in a center. There are th
approaches to introduce a concentrated couple at the wedge v
~@2#!: ~a! placing a compensating loading on an arc of radiusa
with a center in the vertex~the approach of Carothers!, ~b! placing
a compensating loading on the wedge flanks on a segment o
lengtha from the vertex~the approach of Sternberg-Koiter! or ~c!
using a concentrated couple applied at an interior point placed
a distancea ~the approach of Dundurs-Markenscoff!. Then the
parametera tends to zero. Here the approach of Dundur
Markenscoff will be applied.

The solution of the main problem is based on the solution of
subsidiary problem, when wedge flanks are rigidly fixed.
Markenscoff and M. Paukshto@3# solved such problem for a clas
sical couple. According to the approach@4# the expression for
stresses in the problem for a wedge with free flanks is obtai
from the solution of the problem with the rigidly fixed flanks b
the limiting process as Poisson’s ratio tends to unit.

A concentrated couple is defined in the following way: tw
parallel opposite directed forces of a magnitudeP are applied to a
body. The distance between them is equal to 2e. Tendinge to
zero so that the productPe was constant we have a concentrat
coupleM5 lim

e→0
2Pe @1# in the limit.

The corresponding polar displacements under moment actio
an unbounded plane are as follows:

ur52
M

4pGr
@sin 2u cos 2w20.5 cos 2u sin 2w#,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jun
10, 1997; final revision, December 6, 1999. Associate Technical Editor: R. A
yaratne.
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uu5
M

2pG~x11!r
@~cos2 u1x sin2 u!cos2 w

20.5~x21!sin 2u sin 2w1~sin2 u1x cos2 u!sin2 w#,

(1)

where w is the angle between thex-axis and the moment axis
HereG is the shear modulus andv is the Poisson’s ratio.

Now if the components depending on the angleu are discarded,
a representation will be obtained for the classical ‘‘invaria
couple’’ usually used at consideration of the Carothers proble

ur50,

uu5
M

4pGr
. (2)

These expressions can be obtained also by consideration o
limit of four concentrated forces:M5 lim

e→0
4Pe. The simulation of

a concentrated couple by two concentrated forces complicate
solving process, but it corresponds more to the mechanic sen
a couple.

The following stresses take place in the wedge with the f
flanks under the action of a concentrated couple in its vertex:

1 0,a,0.5p

s r5
4M sin 2u

~sin 2a22a cos 2a!r 2 @cos2 a cos2 w1sin2 a sin2 w#,

su50,

t ru5
4M sin 2u

~sin 2a22a cos 2a!r 2 @cos2 a sin2 u cos2 w

1sin2 a sin2 u sin2 w#. (3)

2 a50.5p

At w50 andw50.5p, all components of stresses are defin
by expression~3!. For other valuesw:

s r→`,

su5
2M cos2 u

pr 2 sin 2w,

t ru→`.

3 0.5p,a,a*

At w50 andw50.5p, all components of stresses are defin
by expression~3! but at other valuesw they are infinite.

4 a5a*

At w50 andw50.5p:

s r→`,

su5
M

2a2 sin 2ar 2 @cos2 a cos2 w~2u2sin 2u!

2sin2 a sin2 w~2u2sin 2u!#,

t ru→`.

At other valuesw they are infinite.
5 0.5p,a,a*

All components of stresses are infinite.
The obtained solution is compared with those for the class

couple@5,3#. The sum of solutions for noninvariant couples atw
5wo andw5wo10.5p ~w is arbitrary! gives the solution for the
classical couple. Sternberg and Koiter showed that in the cas
the classical couple the critical angle separated cases of finite
infinitely increased stresses 2a52a* ~for antisymmetric loading
422 Õ Vol. 67, JUNE 2000 Copyright © 20
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only!. Later S. M. Belonosov@6# noted that forp<2a,2a* the
Carothers solution ‘‘has no physical sense’’ for antisymmet
loading also because it is impossible to realize an antisymme
loading accurately. For the couple considered in the study a
arbitrary orientation the critical angle is 2a5p with the exception
of two special cases atw50 and atw50.5p. Thus, at the con-
sideration of a more realistic model of a concentrated couple,
solution of the Carothers problem is correct for 2a,p only.
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On Eigenfrequencies of an Anisotropic
Sphere

W. Q. Chen,1 J. B. Cai, G. R. Ye, and H. J.
Ding
Department of Civil Engineering, Zhenjiang University,
Hangzhou 310027, P. R. China

This note presents exact frequency equations of two indepen
classes of vibrations of a spherically isotropic solid sphere w
fixed boundary conditions. Numerical calculations are perform
and comparison between two different materials is made. S
useful observations are obtained.@S0021-8936~00!00102-1#

Introduction
Spherically isotropic material is of particular importance b

cause of its application in aerospace and nuclear technology~@1#!.
In addition, the latest geophysical results revealed that the Ea
in fact, should be modeled as a spherically isotropic inhomo
neous sphere with liquid nucleus~@2#!. Chen@3# recently recalled
the research history of spherically isotropic bodies. Althou
great achievements have been made to general solutions~@4,5#!
and vibration theories~@6,7#!, just as it was recently noticed b
Schafbuch et al.@8# for an isotropic sphere, there is no work o
the fundamental case of fixed displacement boundary conditi
The purpose of this brief note is to present the exact three-dim

1Corresponding Author. e-mail: caijb@ccea.zju.edu.cn
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M. Carroll.
00 by ASME Transactions of the ASME



p

r

e

.

t

n

n

-

e-
re

the

the

ions
ng

s

ss

ial
as-
hah

haf-
al

that
te-
ies

an
ode
any

har-

tion
ns.
sional frequency equations of a spherically isotropic sphere w
fixed boundary conditions, from which the ones for an isotro
sphere can be readily derived. As mentioned by Schafbuch e
@8# the results can provide valuable and necessary information
integral equation representations of exterior domain elasto
namic problems and can be a benchmark to check nume
methods for elastic continuum modal analysis.

Basic Formulations
For a spherically isotropic medium, in the spherical coordina

(r ,u,f), the linear constitutive relations can be expressed as
lows ~@4,6#!:

H suu5c11suu1c12sff1c13srr , s ru52c44sru ,

sff5c12suu1c11sff1c13srr , s rf52c44srf ,

s rr 5c13suu1c13sff1c33srr , suf5~c112c12!suf ,

(1)

wheres i j and si j are the stress and strain tensors, respectiv
andci j are the elastic stiffness constants. The equations of mo
and the geometric relationships can be found in any textbook
simplify the basic equations, Ding and Chen@7# employed three
displacement functions to rewrite the displacement componen
follows:

uu52
1

sinu

]c

]f
2

]G

]u
, uf5

]c

]u
2

1

sinu

]G

]f
, ur5w. (2)

It is obvious that the present use of three displacement function
much superior to the Helmholtz formulas wherein an additio
equation for the vector potential function is required~@8#!. It is
also simpler than that of two potential functions employed
other authors~@4,6#!. In fact, it seems natural that three displac
ment components are represented by three displacement func
so that it is easier to be understood. It has been shown in Che@3#
and Ding and Chen@7# that the substitution of Eq.~2! into the
basic equations leads to an uncoupled partial differential equa
and a coupled system of three such ones. On assuming

c5R(
n51

`

Un~j!Sn
m~u,f!eivt, w5R(

n50

`

Wn~j!Sn
m~u,f!eivt,

G5R(
n51

`

Vn~j!Sn
m~u,f!eivt, (3)

wherej5r /R is the nondimensional radial variable andR is the
radius of the sphere;Sn

m(u,f) is the spherical harmonics;n andm
are integers; andv is the circular frequency, one can further tran
fer the partial differential equations to the ordinary ones with th
solutions listed below~@3,7#!:

Un~j!5Bn1j21/2Jh~Vj!, ~n>1!, (4)

W0~j!5C01j
21/2Jn~Vj f 4

21/2!, ~n50!, (5)

Wn~j!5(
j 51

2

Cn jWn j~j!, Vn~j!5(
j 51

2

Cn jVn j~j!, ~n>1!,

(6)

where J is Bessel function of the first kind;Bn1 and Cn j are
arbitrary constants;V25rv2R2/c44 is the nondimensional fre
quency; andWn j and Vn j are convergent, infinite series in th
variablej, which can be obtained by the matrix Frobenius meth
~@9#! and
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1

4
@912~n21n22!~ f 12 f 2!#.0,

n25
1

4
12~ f 11 f 22 f 3!/ f 4.0,

f 15c11/c44, f 25c12/c44, f 35c13/c44, f 45c33/c44.
(7)

It is noted here that the limited value condition atr 50 has been
satisfied by the solutions~4!–~6!.

Frequency Equations
From Eqs.~2!–~6!, one can derive the expressions of displac

ment without difficulty. Considering free vibration of the sphe
with fixed boundary conditions, i.e.,ur5uu5uf50 at r 5R, one
finds that the vibration can be divided into two classes, just as
case for isotropic sphere~@8#!. Details are omitted for simplicity
and the frequency equations for the both classes are given in
following:

The First Class

tan~V!5V for n51,

and

Jh~V!50 for n.1. (8)

The Second Class

Jn~V f 4
21/2!50 for n50,

and

Wn1~1!Vn2~1!2Wn2~1!Vn1~1!50 for n.0. (9)

It is also noted here that the corresponding frequency equat
for isotropic materials can be easily derived upon the followi
substitution:

c115c335l12m, c125c135l, c445m (10)

wherel andm are the Lame´ constants.

Numerical Results and Discussion
Because the forms of frequency equations of the first class~n

51 corresponds to the torsional mode! and of the second clas
when n50 ~the breathing mode! are very simple, the following
numerical calculation will be performed only for the second cla
whenn.0 ~nonbreathing modes!. Two materials will be consid-
ered: Material I is nearly isotropic like magnesium, while Mater
II is a hypothetical one exhibiting substantial anisotropy. The el
tic constants of the two materials are available in Cohen and S
@6# and the corresponding dimensionless values off i are given in
Table 1.

Table 1 gives values of the nondimensional frequencyV of the
nonbreathing mode~the second class whenn.0! for two materi-
als mentioned above. It is also noted here that the results of Sc
buch et al.@8# for isotropic materials are reproduced and identic
agreement is obtained. As in Schafbuch et al.@8#, only modes
with V less than 20 are presented in Table 1. It can be seen
for Material I, there are 43 nonbreathing modes, while for Ma
rial II, only 34 modes. As the isotropic case, the eigenfrequenc
of each harmonic~n! and mode are interlaced, but there is
orderly increase in the eigenfrequency for the fundamental m
of each subsequent harmonic. In fact, the eigenfrequency of
i th mode of each harmonic increases with the increase of
monic.

It should be mentioned that the integerm, which appears in the
spherical harmonics and represents the nonaxisymmetric mo
(mÞ0) of the sphere is not included in the frequency equatio
The explanation has been given by Silbiger@10# for a thin isotro-
JUNE 2000, Vol. 67 Õ 423
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pic spherical shell. His conclusion is still valid here for a sphe
cally isotropic sphere with fixed boundary conditions.

By comparing our results for anisotropic materials with those
Schafbuch et al.@8# for isotropic ones, one can find the diffe
ences in the values of frequency and mode numbers~for example,
with V less than 20! between them. That is really an importa
point that will affect the traditional design of sphere using isot
pic metallic materials in various engineering applications.
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Table 1 Nondimensional natural frequencies „V… of non-
breathing modes

n

Material I: Material II:

f 153.64 f 251.60 f 1520 f 2512
f 351.32 f 453.76 f 352 f 452

1 4.314791 6.503848 3.488849 6.881477
9.663102 11.31541 10.09261 13.12653
12.88867 15.99893 15.59743 16.52056
17.67265 19.17840 19.42807

2 6.211372 8.186220 6.564605 10.33649
11.21155 13.71557 13.75748 16.79022
14.57968 17.66929 19.25504

3 7.786947 9.963098 8.068259 12.09205
12.71925 15.77926 15.80303 19.17390
16.45163 19.30718

4 9.177424 11.75927 9.319468 13.50838
14.21575 17.42921 17.40240
18.60310

5 10.47039 13.50285 10.49346 14.80725
15.73208 18.95204 18.81884

6 11.70884 15.15068 11.63776 16.05675
17.29190

7 12.91345 16.68883 12.76782 17.28085
18.89945

8 14.09500 18.12956 13.88946 18.48923
9 15.25970 19.49673 15.00503 19.68633
10 16.41139 16.11584
11 17.55267 17.22251
12 18.68535 18.32548
13 19.81076 19.42509
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Torsion of a Viscoelastic Cylinder

R. C. Batra
Fellow ASME

J. H. Yu
Department of Engineering Science and Mechanics,
M/C 0219, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061

Finite torsional deformations of an incompressible viscoelast
circular cylinder are studied with its material modeled by two
constitutive relations. One of these is a linear relation between t
determinate part of the second Piola-Kirchhoff stress tensor a
the time history of the Green-St. Venant strain tensor, and t
other a linear relation between the deviatoric Cauchy stress te
sor and the left Cauchy-Green tensor, its inverse, and the tim
history of the relative Green-St. Venant strain tensor. It is show
that the response predicted by the latter constitutive relation is
better agreement with the test data, and this constitutive relati
is used to compute energy dissipated during torsional oscillatio
of the cylinder.@S0021-8936~00!00502-X#

Batra and Yu@1# recently studied the stress relaxation in a
isotropic, incompressible, and homogeneous viscoelastic body
formed either in finite simple shear or finite simple extension. Th
material response was modeled by two constitutive relations, o
linear in the history of the Green-St. Venant strain tensorE ~e.g.,
see Christensen@2#! and the other linear in the history of the
relative Green-St. Venant strain tensorEt ~e.g., see Bernstein,
Kearsley, and Zapas@3# and Fosdick and Yu@4#!. For each one of
the two deformations studied, the former constitutive relation pr
dicted that the tangent modulus~i.e., the slope of the stress-strain
curve! is an increasing function of the strain but according to th
latter constitutive relation, the tangent modulus is a nonincreas
function of the strain which agrees with the behavior observ
experimentally for most materials~e.g., see Bell@5#!. A similar
result had been obtained by Batra@6# for two linear constitutive
relations in isotropic finite elasticity. We note that both simpl
shearing and simple extension are homogeneous deformations
are universal in the sense that they can be produced by surf
tractions alone in every elastic or viscoelastic body. Batra@7# has
recently compared the response predicted by four linear const
tive relations for finite shearing, finite extension, biaxial loading
and triaxial loading of an isotropic elastic body.

Here we study finite torsional deformations of an incompres
ible, homogeneous, and isotropic viscoelastic circular cylinde
Even though these deformations are inhomogeneous, Ericksen@8#
and Carroll@9# have shown that they are universal for elastic an
viscoelastic bodies, respectively. In cylindrical coordinates, to
sion of a circular cylinder is described byr 5R, u5U1kZ,
z5Z, where (r ,u,z) denote cylindrical coordinates of a point in
the present configuration that occupied the place (R,U,Z) in the
stress-free reference configuration, andk is the angle of twist per
unit length of the cylinder. Relative to an orthonormal set o
bases, the physical components of the deformation gradientF, the
left Cauchy-Green tensorB, and tensorsE andEt are given by

F5F 1 0 0

0 1 kr

0 0 1
G , B5F 1 0 0

0 11k2r 2 kr

0 kr 1
G , (1)
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2 F 0 0 0

0 0 kr

0 kr k2r 2
G ,

Et~t!5
1

2 F 0 0 0

0 0 ~k~t!2k~ t !!r

0 ~k~t!2k~ t !!r ~k~t!2k~ t !!2r 2
G . (2)

We model the material by the following two constitutive rel
tions ~e.g., see Christensen@10#, Bernstein et al.@3#, and Fosdick
and Yu @4#!

T̄52p11rFcG ,ĖFT, (3a)

T52p11rF~c,F!T, (3b)

where a superimposed dot indicates the material time-deriva
C5FTF, B5FFT, 2E5(C21), c̄,E[]c̄/]E, c,F[]c/]F,

rc̄5E
2`

t E
2`

t

G1~ t2t,t2h!
]trE~t!

]t

]trE~h!

]h
dtdh

1
1

2E2`

t E
2`

t

G2~ t2t,t2h!tr S ]E~t!

]t

]E~h!

]h Ddtdh,

(4)

rc5
1

2
b1trB1

1

2
b21trB211E

2`

t

g~ t2t!
]trEt~t!

]t
dt.

Here,T is the Cauchy stress tensor;p the hydrostatic pressure no
determined by the deformation;r the mass density;c̄ andc are
specific ~per unit mass! strain energy functionals; andg(•),
G1(•,•), andG2(•,•) are material relaxation functions which a
smooth, positive, and monotonically decreasing functions of t
t. G1(•,•) andG2(•,•) satisfyG1(x,y)5G1(y,x). The constants
b1 and b21 satisfy b1.0, b21,0. Substituting~4! into ~3!
yields, in physical components,

T̄i j 52pd i j 1S dKLE
2`

t

2G1~ t2t,0!
]EMM~t!

]t
dt

1E
2`

t

G2~ t2t,0!
]EKL~t!

]t
dt D FiKF jL , (5a)

Ti j 52pd i j 1b1Bi j 1b21Bi j
211E

2`

t

g~ t2t!
]Eti j ~t!

]t
dt,

(5b)

whered i j is the Kronecker delta. Here and below, quantities
the constitutive relation~3a! are indicated by a superposed ba
Constitutive relations~5a! and ~5b! are more general than thos
studied by Batra and Yu@1#.

Christensen@10# has analyzed the torsional deformations o
homogeneous viscoelastic cylinder made of material~5a!. Follow-
ing the same procedure or that given by Truesdell and Noll@11#
for the torsion of an isotropic elastic cylinder, we determine
hydrostatic pressure and the components of the Cauchy stres
sor that satisfy the balance of linear momentum without body
inertia forces, and the boundary condition of null tractions on
mantle of the cylinder.

The stress components,Tzz andTuz , have the expressions

T̄zz~ t !52S 1

4
k2~ t !~a42r 4!~2F1~ t !1F2~ t !!

1
1

2
k~ t !~a22r 2!F3~ t ! D1r 2F2~ t !, (6a)
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Tzz~ t !5S b1

2
1b21D r 2k2~ t !1

1

2 E2`

t

g~ t2t!r 2
]

]t
~k~t!

2k~ t !!2dtb1

a2

2
k2, (6b)

T̄uz~ t !5~2F1~ t !1F2~ t !!k~ t !r 31
1

2
rF 3~ t !, (7a)

Tuz~ t !5k~ t !r ~b12b21!1
1

2 E2`

t

g~ t2t!r
]

]t
~k~t!2k~ t !!dt,

(7b)

wherea is the radius of the cylinder, and

Fj~ t !5
1

2E2`

t

Gj~ t2t,0!
dk2~t!

dt
dt, j51,2;

F3~ t !5E
2`

t

G2~ t2t,0!
dk~t!

dt
dt. (8)

We now consider a stress-relaxation test withk(t)5k0h(t);
h(t) being the Heaviside unit step function. Noting th
2Fj(t)5Gj(t,0)k0

2, andF3(t)5G2(t,0)k0 ~e.g., see Christense
@10#!, we obtain the following expressions for the resultant norm
force, Nz(t), and the resultant torque,Mz(t), acting on a cross
section of the cylinder.

N̄z~ t !52
pk0

4a6

6
FG1~ t,0!1

1

2
G2~ t,0!G ,

Nz~ t !52
pk0

2a4

4
@22b211b11g~ t !#, (9)

M̄ z~ t !5
p

2
k0a4Fk0

2a2

3
~2G1~ t,0!1G2~ t,0!!1

1

2
G2~ t,0!G ,

(10a)

Mz~ t !5
p

2
k0a4H ~b12b21!1

1

2
g~ t !J . (10b)

Recalling thatg, G1 , G2 , andb1 are positive andb21 is nega-
tive, each constitutive relation predicts that a compressive a
force must be applied to the end faces of the cylinder in orde
maintain its length. The average axial stress is proportiona
k0

4a4 andk0
2a2 for the constitutive relations~5a! and~5b!, respec-

tively. WhereasMz is a linear function ofk0 for the constitutive
relation~5b!, it also depends uponk0

3 for the constitutive relation
~5a!.

We now compare average shear stress versus shear s
curves as predicted from these two constitutive relations with
the experimental data of Lenoe et al.~@12#, Fig. 3!, and setk(t)
5k̇t, where k̇ is the torsional rate. Lenoe et al. assume th
G(t)5( i 50

3 C ie
2g i t, whereC i is the relaxation modulus andg i

equals the reciprocal of the relaxation time. For the polyureth
rubber studied, they found thatC052.896 MPa,C150.387 MPa,
C250.152 MPa, C350.689 MPa, and g050 s21, g1

50.001316 s21, g250.0050 s21, g350.002631 s21 provided a
good fit to the test data. Recall that the average shear stressTuz

m

5*0
a2rTuzdr/a2. We assign following values to various materi

parameters:

G1~ t !5
2C0~11n!

3~122n!
, n50.49; G2~ t !5(

i 50

3

C ie
2g i t;

b12b215C0 ; g~ t !5(
i 51

3

C ie
2g i t. (11)
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Figure 1 exhibits the average shear stress versus the shear
curves fork̇50.0036 s21 as computed from constitutive relation
~5a! and ~5b!, and also the experimental data of Lenoe et al. F
shear strains up to 0.1, the three curves are close to each o
However, for large shear strains, the experimental curve is c
cave downwards but the ones obtained from constitutive relat
~5a! and~5b! are concave upwards and nearly linear, respectiv
For large shear strains, predictions from the constitutive rela
~5a! are not even in qualitative agreement with the test data.

Henceforth we only use constitutive relation~5b! and analyze
the damping of vibrations. We consider steady-state oscillati
with k(t)5k̄0 sinvt, wherev, the frequency of oscillations, is
such that inertia effects can be neglected~e.g., see Christense
@10#!. The energy loss per cycle is given byD
5*0

2p/vM (t)k̇(t)dt since there is no work done byNz because of
null axial elongation of the cylinder. Forg(t)5g0e2gt we obtain

D~g,v!5
pg0k̄0

2a4

2
•

pgv~g21v2!1v2g2~e22pg/v21!

~g21v2!2
.

(12)

Whenever the terme22pg/v can be neglected, the energy loss w
be a symmetric function ofg andv. Figure 2 depicts the normal
ized energy lossDn54D(g,v)/pg0k̄0

2a4 as a function ofg and
v. For e22pg/v!g or v, we see that the energy dissipation p

Fig. 1 Average shear stress versus shear strain curves com-
puted from constitutive relations „5a… and „5b… and the test data
of Lenoe et al. †12‡. The test data is indicated as dots.

Fig. 2 The normalized energy loss Õcycle per unit length of the
cylinder as a function of the reciprocal of the relaxation time
and the angular frequency
426 Õ Vol. 67, JUNE 2000
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cycle is maximum wheng5v. One possible explanation is tha
when the material relaxes faster than the frequency of the app
torque, i.e.,g.v, or when the material relaxes very slowly, i.e
g,v, there will be a larger component ofMz in phase withk
during a part of the loading cycle which will decreaseD. Forg50,
the material takes forever to relax, and there is no ene
dissipation.

For a viscoelastic material withg(t)5( i 51
3 C ie

2g i t, the energy
loss per cycle is

D~v!5
pk̄0

2a4

4
(
i 51

3

C i•
pg iv~g i

21v2!1v2g i
2~e22pg i /v21!

~g i
21v2!2

,

(13)

For the aforestated values of material parameters andk051,
a50.1 m, the energy loss is plotted in Fig. 3. The energy los
high for 0.002<v<0.004. One can similarly find the optimum
frequency range for other materials.

In conclusion, we note that the predictions from the constitut
relation ~5b! are in better qualitative agreement with the test o
servations than those from the constitutive relation~5a!. A real
test of a constitutive relation is its ability to predict results
agreement with test data for configurations other than those u
to find the values of material parameters. This arduous task
not been pursued here.
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A Strip Element Method for Analyzing
Wave Scattering by a Crack in an
Axisymmetric Cross-Ply
Laminated Composite Cylinder
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G. R. Liu

K. Y. Lam
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H. M. Shang
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Crescent, Singapore 11926

A strip element method is presented for analyzing waves scatt
by a crack in an axisymmetric cross-ply laminated composite
inder. The cylinder is at the outset discretized as axisymme
strip elements through the radial direction. The application of t
Hamilton variational principle develops a set of governing ord
nary differential equations. The particular solutions to the resu
ing equations are found using a modal analysis approach in c
junction with the Fourier transform technique. The comp
mentary solutions are formulated by the superposition of eig
vectors, the unknown coefficients of which are determined f
axial stress boundary conditions at the tips of the crack. T
summation of the particular and complementary solutions gi
the general solutions. Numerical examples are given for cross
laminated composite cylinders with radial cracks. The resu
show that the present method is effective and efficient.
@S0021-8936~00!00202-6#

Introduction
Wave propagation in anisotropic media is one of the most f

damental and important subjects in the practice of engineer
Relevant literature is vast. Mal@1# and Nayfeh@2# reviewed it
well. Because of the inherent complexities involved in mate
itself, an analysis of wave propagation in layered composite
inders needs to resort to numerical techniques. Dealing w
propagating waves and edge vibration in anisotropic compo
cylinders, Huang and Dong@3# proposed an efficient numerica
analytical method in which a composite cylinder was modeled
finite elements, triangular functions, and wave function exp
sions in the radial, circumferential, and axial directions, resp
tively. The salient features of the method are to be capable

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, May 3, 1999; final revision, December 7, 1999. Associate Technical Ed
A. K. Mal.
Copyright © 2Journal of Applied Mechanics
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reducing the spatial dimensions of a problem by one and to o
tedious pre-processors occupying a substantial part of a finite
ement method. Rattanwangcharoen et al.@4# utilized the
numerical-analytical method to solve the reflection problem
waves at the free edge of a laminated circular cylinder. Recen
Rattanwangcharoen et al.@5# combined the numerical-analytica
method and the finite element method to analyze scattering
axisymmetric guided waves by a weldment between two la
nated cylinders. In their treatise, the numerical-analytical met
was employed to model the cylinders and the finite elem
method was used to model the weldment. This combinatory p
cedure was applied to axisymmetric guided wave scattering
cracks in welded steel pipes by Zhuang et al.@6#. The advantage
of the combinatory procedure is to be able to treat complex lo
domains of a cylinder, such as weldment, hole, and imperfect
The disadvantage is to reduce the efficiency of the numeri
analytical method. Therefore, it is interesting to develop
numerical-analytical method for analyzing waves in a compo
cylinder containing a crack.

In this paper, a strip element method is formulated for anal
ing wave scattering by a crack in an axisymmetric cross-ply la
nated composite cylinder, subjected to a harmonic excitation
line source along the circumferential direction. The method
based on a strip element method proposed by Liu and Achenb
@7,8# for a cracked laminated composite plate as well as
numerical-analytical method proposed by Huang and Dong@3# for
a perfect laminated composite cylinder. The cylinder is first mo
eled using axisymmetric strip elements in the radial directi
Then the Hamilton variational principle is used to derive a syst
of governing ordinary differential equations for the cylinder in
frequency domain. A particular solution for the resulting equ
tions is found using a modal analysis approach and inverse F
rier transform techniques. A general solution is obtained w
axial stress boundary conditions. Lastly, numerical examples
presented for multilayered cylinders with outer surface-break
and radial interior cracks.

Formulation
Consider an infinitely long cracked cross-ply laminated co

posite cylinder made of an arbitrary number of linearly elas
cylinder-like laminae. The bonding between plies is perfect exc
in the region of the crack. Deformations of the cylinder are
sumed small under a harmonic excitation. A radial line load
q5q0 exp(ivt) uniformly distributed along the circumferential d
rection is applied on the outer surface of the cylinder.

Because the geometry of the cylinder and the load are inde
dent of the circumferential direction, the problem is axisymmet
Let z and r denote, respectively, the axial and radial coordinat
then the strain-displacement relations are given by

«5Lu (1)

where«@«z «u « r g rz#
T is the vector of strains andu5@u w#T is

the vector of displacements. Hereu and w are the displacemen
components in the axial and radial directions, respectively. T
operator matrixL is given by

L5F ]

]z
0 0

]

]r

0
1

r

]

]r

]

]z

G T

5L1

]

]z
1L2

]

]r
1L3

1

r
(2)

where the matricesL1 , L2 , andL3 can be obtained by inspectio
of Eq. ~2!.

A lamina under consideration is transversely isotropic, so
stresses are related to strains by

s5Q̄« (3)

wheres5@sz su s r t rz#
T is the vector of stresses and

ics
tor:
000 by ASME JUNE 2000, Vol. 67 Õ 427
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r-
Q̄5F Q̄11 Q̄12 Q̄13 0

Q̄12 Q̄22 Q̄23 0

Q̄13 Q̄23 Q̄33 0

0 0 0 Q̄55

G (4)

is the matrix of the off-principal-axis stiffness coefficients of t
lamina whose expressions, in terms of engineering constants
given by Vinson and Sierakowski@9#.

A governing equation for the cylinder follows from the Ham
ton variational principle which takes the form

E
t0

t1
d~V2T!dt50 (5)

where t0 and t1 are arbitrary time instants andV and T are the
potential energy and kinetic energy of the cylinder, respectiv
The potential energy of the cylinder in the absence of body for
is given by

V5pE
Ri

Ro

«Tsrdr 22pRoqw̄ (6)

whereRi andRo are, respectively, the inner and outer radii of t
cylinder, andw̄ is the radial displacement at the loaded positi
which is expressible asw̄5nu. Heren5@0 1#.

Substitution of Eqs.~1! to ~3! into Eq. ~6! gives

V5pE
Ri

RoS ]uT

]z
D11

]u

]z
1

]uT

]z
D12

]u

]r
1

1

r

]uT

]z
D13u

1
]uT

]r
D12

T
]u

]z
1

]uT

]r
D22

]u

]r
1

1

r

]uT

]r
D23u1

1

r
uTD13

T
]u

]z

1
1

r
uTD23

T
]u

]r
1

1

r 2 uTD33uD rdr 22puTnTRoq (7)

where

D115L1
TQ̄L1 D125L1

TQ̄L2 D135L1
TQ̄L3

D225L2
TQ̄L2 D235L2

TQ̄L3 D335L3
TQ̄L3 . (8)

The kinetic energy of the system is expressed in terms of
displacement vector as

T5pE
Ri

Ro ]uT

]t

]u

]t
rrdr (9)

wherer is the mass density of the material.
Assume that the cylinder is divided intoN axisymmetric strip

elements in the radial direction and letRm21 andRm be, respec-
tively, the inner and outer radii of any elementm. Then the dis-
placements within an element are approximated as

u5N~r !U~z!exp~ ivt ! (10)

whereN(r ) is the shape function matrix of the element andU(z)
is the vector of unknown displacement amplitudes.

Substituting Eqs.~7! and ~9! into Eq. ~5!, in view of Eq. ~10!,
and then taking variation with respect toU leads to the following
governing ordinary differential equations for the cylinder

2A2

d2U

dz2 1A1

dU

dz
1~A02v2M !U5q (11)

where
428 Õ Vol. 67, JUNE 2000
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m51

N E
Rm21

Rm S ]NT

]r
D22

]N

]r
1

1

r

]NT

]r
D23N

1
1

r
NTD23

T
]N

]r
1

1

r 2 NTD33ND rdr (12)

A15 (
m51

N E
Rm21

Rm S 2NTD12

]NT

]r
2

1

r
NTD13N

1
]NT

]r
D12

T N1
1

r
NTD13

T ND rdr (13)

A25 (
m51

N E
Rm21

Rm

NTD11Nrdr

M5 (
m51

N E
Rm21

Rm

NTNrrdr q5NTnTRoq0 . (14)

As can be seen from Eq.~11!, the original two-dimensional
problem has simplified to a one-dimensional one through the s
element idealization in the radial direction. Tedious pr
processors in finite element methods are omitted here. Co
quently, computational labor can be greatly reduced. In addit
the strip element method requires a nodal line numbering al
the r-axis only. This yields the minimum matrix bandwidth an
therefore the strip element method requires much less comp
memory and time compared with finite element methods.

Equation~11! is a set of nonhomogeneous ordinary different
equations in the frequency domain. A combination of mod
analysis and inverse Fourier transform techniques gives its
ticular solution:

Up55 2 i (
m51

M
wm2

1Lq0Rowm1
1R

Bm
1 e2 ikm

1z, for z>0

i (
m51

M
wm2

2Lq0Rowm1
2R

Bm
2 e2 ikm

2z, for z,0

(15)

whereBm5wm
L Bwm

R , km , wm1
L , wm2

L , wm1
R , andwm2

R are, respec-
tively, the eigenvalues—the left and right eigenvectors obtain
from the following characteristic equations:

S F 0 I

v2M2A0 2 iA1
G2kmF I 0

0 A2
G D H wm1

R

wm2
R J 50 (16)

H wm1
L

wm2
L J TS F 0 I

v2M2A0 2 iA1
G2kmF I 0

0 A2
G D 50 (17)

The complementary solution of the associated homogene
equation of Eq.~11! can be expressed by superposition of the rig
eigenvectorswm

R :

Uc5 (
m51

2M

Cmwm
R exp~ ikmz!5G~z!C (18)

where the subscriptc denotes the complementary solution and t
coefficient vectorC is to be specified. The addition of the particu
lar and complementary solutions yields the general solution of
~11! in the form

U5Uc1Up5G~z!C1Up . (19)

Thus the coefficient vectorC can be expressed in terms of pa
ticular and general solutions at radial boundaries:

C5Gb
21~Ub2Upb! (20)

where the subscriptb denotes boundaries. Substitution of Eq.~20!
into Eq. ~19! gives
Transactions of the ASME
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U5G~z!Gb
21~Ub2Upb!1Up . (21)

The stress boundary conditions at the crack tips are given by

Rb5KUb1Sp (22)

where

Rb5H Rb
L

Rb
RJ Ub5H Ub

L

Ub
RJ (23)

K5FR1 0

0 R1
G1F R2

]GL

]z
Gb

21

R2

]GR

]z
Gb

21
G (24)

Sp5FR2 0

0 R2
G 5

]Up
L

]z

]Up
R

]z
6 2F R2

]GL

]z
Gb

21

R2

]GR

]z
Gb

21
G H Up

L

Up
RJ (25)

are the external traction and displacement vectors on the ra
boundaries, the stiffness matrix and the equivalent external fo
acting on the radial boundaries, respectively. The superscripL
andR represent the left and right sides of the crack, respectiv

Numerical Results and Discussion
In this section, numerical examples are given for (C90/Gs

and (C0/G90)s laminated composite cylinders. In the lamina
codes, a lamina numbering increases from the inner to outer
face. The letters C and G represent carbon/epoxy and glass/e
respectively. The number following the letters indicates the a
muthal angle of the fiber orientation with respect to the axisz. The
subscripts denotes that the multilayered cylinders are symme
cally stacked. The material properties of the cylinders are ta
from Takahashi and Chou@10#. Reference propertiesQ44 and r
are the material constant and mass density of C0.

Figure 1 shows the distributions of the radial displacement
the outer surface of a (C90/G0)s composite cylinder with an oute
surface-breaking crack. For comparison, the results for the co
sponding uncracked case are also plotted in the same figure~dot-
ted lines!. It can be seen from the figure that the presence of
crack causes singularity of the displacement at the position of
crack. This phenomenon is of practical importance, from wh

Fig. 1 Distribution of the radial displacement on the outer sur-
face of a „C90ÕG0…s cylinder with an outer surface-breaking
crack „vhArÕQ44Ä3.14, Ri ÕhÄ1…
Journal of Applied Mechanics
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the position of the crack can be clearly identified. It should
noted that the displacements at the left and right tips of the cr
are discontinuous although this is not visible in the figure. B
cause of superposition of the incident and scattered wave fie
the absolute value of the displacement between the loaded p
and the crack becomes irregular.

The present method may also be employed to detect a ra
interior crack in a composite cylinder. Figure 2 shows the dis
butions of the radial displacement on the outer surface o
(C0/G90)s composite cylinder with a radial interior crack. It i
apparent that when a wave strikes the radial interior crack in
cylinder, it generates scattering and causes an irregular oscilla
of the absolute value of the displacement between the load p
of application and crack. From the different patterns of wa
fields at the left and right sides of the crack, the position of
interior crack can be easily identified although the crack is a
distance from the outer surface.
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Thermal Stresses V,edited by R. B. Hetnarski. Lastran Co
poration, Rochester, NY, 1999. 542 pages. Price: 135.00.

REVIEWED BY D. H. ALLEN 1

This is the fifth volume in the series edited by R. B. Hetnar
on thermal stresses. While the first four volumes dealt with
variety of diverse issues, the current volume deals primarily w
the issue of thermomechanically induced stresses and defo
tions in composite solids. The text is comprised of four chapt
each written by different authors, and dealing with somewhat
ferent issues in composites. The first two chapters are q
closely related in scope, whereas the final two chapters deal
subjects that are related to the other two chapters, but ma
treated separately.

The first chapter is written by C. T. Herakovich and J. Abou
both of whom are well known for their past research in comp
ites, especially those that contain at least one inelastic phase
thrust of this chapter is aimed primarily at stress analysis of m
matrix composites, with special emphasis on three aspects of
subject: micromechanics; lamination theory; and composite st
tures. Each of these subjects is treated in sufficient detail to
read without referring to additional materials. However, both
first and last emphasize only those methods that the authors
instrumental in formulating over the years.

In the case of micromechanics, the approach described by
authors is the method of cells. Particularly noteworthy in t
chapter is the study of yielding of metal matrix composites un
multiaxial stress states, a subject in which the authors are a
forefront of research.

The authors then review lamination theory for the case of tr
sient temperatures. In the case of structures, the authors dis
primarily a methodology for modeling composite tubes.

This chapter can be considered to be an introduction to
subject of stress analysis of composites under transient temp
ture conditions, with emphasis on analytic methods of probl
solution.

The second chapter is authored by K. K. Tamma and A.
Avila. It covers the same issue as chapter one, namely, the
diction of thermally induced stresses in~primarily metal matrix!
composites. However, the emphasis in this chapter is on com
tational techniques of stress analysis. The chapter opens w
lengthy and exhaustive review of computational methods
stress analysis in composites. This section is quite detailed
informative, especially for those who are new to the field. This
followed by two equally useful discussions of various microm
chanics models, and several viscoplasticity models for metals.
section on computational methods of structural analysis in
duces the finite element method for stress and deformation an
sis of solids undergoing thermal transients. The chapter ends
several example calculations for both aluminum and titanium m
trix composite structures such as blades in hot gas turbine eng
It is significant to note that such calculations were not possible

1Department of Aerospace Engineering, Texas A&M University, College Stat
TX 77843. Fellow ASME.
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recently as twenty years ago. Today, such algorithms are avail
in numerous commercially available codes, and these calculat
are performed routinely as a part of the design process. As s
this chapter presents a concise review of these advances in th
score of years.

The third chapter is written by R. Wojnar, S. Bytner, and
Galka, all from the Polish Academy of Sciences in Warsaw. T
chapter treats an entirely different subject from the first two ch
ters, dealing with the prediction of effective properties of hete
geneous media. While the emphasis in the current chapter i
homogenization techniques for thermally related properties, o
properties such as mechanical, electric, and diffusive prope
are also treated.

The scope of this chapter is much narrower than the previ
two chapters. Whereas the opening chapters tend to give o
views of a broad field of research, this chapter considers the
ject of homogenization theory in great detail. Indeed, to this
viewer’s knowledge this is one of the two or three most detai
studies of this important issue in composites. Particularly no
worthy is the historical review that opens the chapter. The auth
have taken great care to detail the important events on this su
dating back to the mid 19th century.

The interested reader will find a rigorous review of homoge
zation theory, and while the treatment is quite mathematica
nature, it is in a notation that is familiar to those who follow th
area of research.

The final chapter in the text is written by N. Rajic, of the Aer
nautical and Maritime Research Laboratory in Melbourne, Aus
lia. This chapter deals with an important but quite dissimilar to
from the first three. The issue herein centers on the conversio
mechanical energy to heat during plastic deformations an
crack growth in solids. While this subject was touched upon
previous volumes in this series, the current treatment is a welc
entry to the current text, and due to the emphasis on metal ma
composites in chapters one and two, is well placed in the cur
volume.

The author reviews the phenomenological description of
thermodynamics of plastic dissipation, and the model is utilized
predict the temperature rise due to a plastic zone near a circ
hole in a metallic plate. This discussion is followed by a sh
section on the prediction of the temperature change induced
plate by the energy dissipated when a crack runs in a ductile s
While this chapter is somewhat shorter and less detailed than
others, it is nevertheless inciteful in its treatment of the subjec
dissipation.

Despite the fact that there are differing authors, this volu
does contain a common scope, which is often not the cas
volumes of this type. Furthermore, the assemblage of all of
information into a single volume constitutes at the very least o
of the most voluminous treatments of this subject heretofore s
by this reviewer. Thus, the volume would make a quite use
addition to both the reference and educational collections of
entists working in this field.

To order contact: Lastran Corporation, 78 Partridge Hill, Hone
oye Falls, NY, 14472, or visit the page: www.lastran.com
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